Spaces:
Runtime error
Runtime error
| # Audio_Transcription_Lib.py | |
| ######################################### | |
| # Transcription Library | |
| # This library is used to perform transcription of audio files. | |
| # Currently, uses faster_whisper for transcription. | |
| # | |
| #################### | |
| # Function List | |
| # | |
| # 1. convert_to_wav(video_file_path, offset=0, overwrite=False) | |
| # 2. speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False) | |
| # | |
| #################### | |
| # | |
| # Import necessary libraries to run solo for testing | |
| import gc | |
| import json | |
| import logging | |
| import multiprocessing | |
| import os | |
| import queue | |
| import sys | |
| import subprocess | |
| import tempfile | |
| import threading | |
| import time | |
| # DEBUG Imports | |
| #from memory_profiler import profile | |
| import pyaudio | |
| from faster_whisper import WhisperModel as OriginalWhisperModel | |
| from typing import Optional, Union, List, Dict, Any | |
| # | |
| # Import Local | |
| from App_Function_Libraries.Utils.Utils import load_comprehensive_config | |
| from App_Function_Libraries.Metrics.metrics_logger import log_counter, log_histogram | |
| # | |
| ####################################################################################################################### | |
| # Function Definitions | |
| # | |
| # Convert video .m4a into .wav using ffmpeg | |
| # ffmpeg -i "example.mp4" -ar 16000 -ac 1 -c:a pcm_s16le "output.wav" | |
| # https://www.gyan.dev/ffmpeg/builds/ | |
| # | |
| whisper_model_instance = None | |
| config = load_comprehensive_config() | |
| processing_choice = config.get('Processing', 'processing_choice', fallback='cpu') | |
| total_thread_count = multiprocessing.cpu_count() | |
| class WhisperModel(OriginalWhisperModel): | |
| tldw_dir = os.path.dirname(os.path.dirname(__file__)) | |
| default_download_root = os.path.join(tldw_dir, 'models', 'Whisper') | |
| valid_model_sizes = [ | |
| "tiny.en", "tiny", "base.en", "base", "small.en", "small", "medium.en", "medium", | |
| "large-v1", "large-v2", "large-v3", "large", "distil-large-v2", "distil-medium.en", | |
| "distil-small.en", "distil-large-v3", | |
| ] | |
| def __init__( | |
| self, | |
| model_size_or_path: str, | |
| device: str = processing_choice, | |
| device_index: Union[int, List[int]] = 0, | |
| compute_type: str = "default", | |
| cpu_threads: int = 0,#total_thread_count, FIXME - I think this should be 0 | |
| num_workers: int = 1, | |
| download_root: Optional[str] = None, | |
| local_files_only: bool = False, | |
| files: Optional[Dict[str, Any]] = None, | |
| **model_kwargs: Any | |
| ): | |
| if download_root is None: | |
| download_root = self.default_download_root | |
| os.makedirs(download_root, exist_ok=True) | |
| # FIXME - validate.... | |
| # Also write an integration test... | |
| # Check if model_size_or_path is a valid model size | |
| if model_size_or_path in self.valid_model_sizes: | |
| # It's a model size, so we'll use the download_root | |
| model_path = os.path.join(download_root, model_size_or_path) | |
| if not os.path.isdir(model_path): | |
| # If it doesn't exist, we'll let the parent class download it | |
| model_size_or_path = model_size_or_path # Keep the original model size | |
| else: | |
| # If it exists, use the full path | |
| model_size_or_path = model_path | |
| else: | |
| # It's not a valid model size, so assume it's a path | |
| model_size_or_path = os.path.abspath(model_size_or_path) | |
| super().__init__( | |
| model_size_or_path, | |
| device=device, | |
| device_index=device_index, | |
| compute_type=compute_type, | |
| cpu_threads=cpu_threads, | |
| num_workers=num_workers, | |
| download_root=download_root, | |
| local_files_only=local_files_only, | |
| # Maybe? idk, FIXME | |
| # files=files, | |
| # **model_kwargs | |
| ) | |
| def get_whisper_model(model_name, device): | |
| global whisper_model_instance | |
| if whisper_model_instance is None: | |
| logging.info(f"Initializing new WhisperModel with size {model_name} on device {device}") | |
| whisper_model_instance = WhisperModel(model_name, device=device) | |
| return whisper_model_instance | |
| # os.system(r'.\Bin\ffmpeg.exe -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"') | |
| #DEBUG | |
| #@profile | |
| def convert_to_wav(video_file_path, offset=0, overwrite=False): | |
| log_counter("convert_to_wav_attempt", labels={"file_path": video_file_path}) | |
| start_time = time.time() | |
| out_path = os.path.splitext(video_file_path)[0] + ".wav" | |
| if os.path.exists(out_path) and not overwrite: | |
| print(f"File '{out_path}' already exists. Skipping conversion.") | |
| logging.info(f"Skipping conversion as file already exists: {out_path}") | |
| log_counter("convert_to_wav_skipped", labels={"file_path": video_file_path}) | |
| return out_path | |
| print("Starting conversion process of .m4a to .WAV") | |
| out_path = os.path.splitext(video_file_path)[0] + ".wav" | |
| try: | |
| if os.name == "nt": | |
| logging.debug("ffmpeg being ran on windows") | |
| if sys.platform.startswith('win'): | |
| ffmpeg_cmd = ".\\Bin\\ffmpeg.exe" | |
| logging.debug(f"ffmpeg_cmd: {ffmpeg_cmd}") | |
| else: | |
| ffmpeg_cmd = 'ffmpeg' # Assume 'ffmpeg' is in PATH for non-Windows systems | |
| command = [ | |
| ffmpeg_cmd, # Assuming the working directory is correctly set where .\Bin exists | |
| "-ss", "00:00:00", # Start at the beginning of the video | |
| "-i", video_file_path, | |
| "-ar", "16000", # Audio sample rate | |
| "-ac", "1", # Number of audio channels | |
| "-c:a", "pcm_s16le", # Audio codec | |
| out_path | |
| ] | |
| try: | |
| # Redirect stdin from null device to prevent ffmpeg from waiting for input | |
| with open(os.devnull, 'rb') as null_file: | |
| result = subprocess.run(command, stdin=null_file, text=True, capture_output=True) | |
| if result.returncode == 0: | |
| logging.info("FFmpeg executed successfully") | |
| logging.debug("FFmpeg output: %s", result.stdout) | |
| else: | |
| logging.error("Error in running FFmpeg") | |
| logging.error("FFmpeg stderr: %s", result.stderr) | |
| raise RuntimeError(f"FFmpeg error: {result.stderr}") | |
| except Exception as e: | |
| logging.error("Error occurred - ffmpeg doesn't like windows") | |
| raise RuntimeError("ffmpeg failed") | |
| elif os.name == "posix": | |
| os.system(f'ffmpeg -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"') | |
| else: | |
| raise RuntimeError("Unsupported operating system") | |
| logging.info("Conversion to WAV completed: %s", out_path) | |
| log_counter("convert_to_wav_success", labels={"file_path": video_file_path}) | |
| except Exception as e: | |
| logging.error("speech-to-text: Error transcribing audio: %s", str(e)) | |
| log_counter("convert_to_wav_error", labels={"file_path": video_file_path, "error": str(e)}) | |
| return {"error": str(e)} | |
| conversion_time = time.time() - start_time | |
| log_histogram("convert_to_wav_duration", conversion_time, labels={"file_path": video_file_path}) | |
| gc.collect() | |
| return out_path | |
| # Transcribe .wav into .segments.json | |
| #DEBUG | |
| #@profile | |
| # FIXME - I feel like the `vad_filter` shoudl be enabled by default.... | |
| def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='medium.en', vad_filter=False, diarize=False): | |
| log_counter("speech_to_text_attempt", labels={"file_path": audio_file_path, "model": whisper_model}) | |
| time_start = time.time() | |
| if audio_file_path is None: | |
| log_counter("speech_to_text_error", labels={"error": "No audio file provided"}) | |
| raise ValueError("speech-to-text: No audio file provided") | |
| logging.info("speech-to-text: Audio file path: %s", audio_file_path) | |
| try: | |
| _, file_ending = os.path.splitext(audio_file_path) | |
| out_file = audio_file_path.replace(file_ending, "-whisper_model-"+whisper_model+".segments.json") | |
| prettified_out_file = audio_file_path.replace(file_ending, "-whisper_model-"+whisper_model+".segments_pretty.json") | |
| if os.path.exists(out_file): | |
| logging.info("speech-to-text: Segments file already exists: %s", out_file) | |
| with open(out_file) as f: | |
| global segments | |
| segments = json.load(f) | |
| return segments | |
| logging.info('speech-to-text: Starting transcription...') | |
| # FIXME - revisit this | |
| options = dict(language=selected_source_lang, beam_size=10, best_of=10, vad_filter=vad_filter) | |
| transcribe_options = dict(task="transcribe", **options) | |
| # use function and config at top of file | |
| logging.debug("speech-to-text: Using whisper model: %s", whisper_model) | |
| whisper_model_instance = get_whisper_model(whisper_model, processing_choice) | |
| # faster_whisper transcription right here - FIXME -test batching - ha | |
| segments_raw, info = whisper_model_instance.transcribe(audio_file_path, **transcribe_options) | |
| segments = [] | |
| for segment_chunk in segments_raw: | |
| chunk = { | |
| "Time_Start": segment_chunk.start, | |
| "Time_End": segment_chunk.end, | |
| "Text": segment_chunk.text | |
| } | |
| logging.debug("Segment: %s", chunk) | |
| segments.append(chunk) | |
| # Print to verify its working | |
| logging.info(f"{segment_chunk.start:.2f}s - {segment_chunk.end:.2f}s | {segment_chunk.text}") | |
| # Log it as well. | |
| logging.debug( | |
| f"Transcribed Segment: {segment_chunk.start:.2f}s - {segment_chunk.end:.2f}s | {segment_chunk.text}") | |
| if segments: | |
| segments[0]["Text"] = f"This text was transcribed using whisper model: {whisper_model}\n\n" + segments[0]["Text"] | |
| if not segments: | |
| log_counter("speech_to_text_error", labels={"error": "No transcription produced"}) | |
| raise RuntimeError("No transcription produced. The audio file may be invalid or empty.") | |
| transcription_time = time.time() - time_start | |
| logging.info("speech-to-text: Transcription completed in %.2f seconds", transcription_time) | |
| log_histogram("speech_to_text_duration", transcription_time, labels={"file_path": audio_file_path, "model": whisper_model}) | |
| log_counter("speech_to_text_success", labels={"file_path": audio_file_path, "model": whisper_model}) | |
| # Save the segments to a JSON file - prettified and non-prettified | |
| # FIXME refactor so this is an optional flag to save either the prettified json file or the normal one | |
| save_json = True | |
| if save_json: | |
| logging.info("speech-to-text: Saving segments to JSON file") | |
| output_data = {'segments': segments} | |
| logging.info("speech-to-text: Saving prettified JSON to %s", prettified_out_file) | |
| with open(prettified_out_file, 'w') as f: | |
| json.dump(output_data, f, indent=2) | |
| logging.info("speech-to-text: Saving JSON to %s", out_file) | |
| with open(out_file, 'w') as f: | |
| json.dump(output_data, f) | |
| logging.debug(f"speech-to-text: returning {segments[:500]}") | |
| gc.collect() | |
| return segments | |
| except Exception as e: | |
| logging.error("speech-to-text: Error transcribing audio: %s", str(e)) | |
| log_counter("speech_to_text_error", labels={"file_path": audio_file_path, "model": whisper_model, "error": str(e)}) | |
| raise RuntimeError("speech-to-text: Error transcribing audio") | |
| def record_audio(duration, sample_rate=16000, chunk_size=1024): | |
| log_counter("record_audio_attempt", labels={"duration": duration}) | |
| p = pyaudio.PyAudio() | |
| stream = p.open(format=pyaudio.paInt16, | |
| channels=1, | |
| rate=sample_rate, | |
| input=True, | |
| frames_per_buffer=chunk_size) | |
| print("Recording...") | |
| frames = [] | |
| stop_recording = threading.Event() | |
| audio_queue = queue.Queue() | |
| def audio_callback(): | |
| for _ in range(0, int(sample_rate / chunk_size * duration)): | |
| if stop_recording.is_set(): | |
| break | |
| data = stream.read(chunk_size) | |
| audio_queue.put(data) | |
| audio_thread = threading.Thread(target=audio_callback) | |
| audio_thread.start() | |
| return p, stream, audio_queue, stop_recording, audio_thread | |
| def stop_recording(p, stream, audio_queue, stop_recording_event, audio_thread): | |
| log_counter("stop_recording_attempt") | |
| start_time = time.time() | |
| stop_recording_event.set() | |
| audio_thread.join() | |
| frames = [] | |
| while not audio_queue.empty(): | |
| frames.append(audio_queue.get()) | |
| print("Recording finished.") | |
| stream.stop_stream() | |
| stream.close() | |
| p.terminate() | |
| stop_time = time.time() - start_time | |
| log_histogram("stop_recording_duration", stop_time) | |
| log_counter("stop_recording_success") | |
| return b''.join(frames) | |
| def save_audio_temp(audio_data, sample_rate=16000): | |
| log_counter("save_audio_temp_attempt") | |
| with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file: | |
| import wave | |
| wf = wave.open(temp_file.name, 'wb') | |
| wf.setnchannels(1) | |
| wf.setsampwidth(2) | |
| wf.setframerate(sample_rate) | |
| wf.writeframes(audio_data) | |
| wf.close() | |
| log_counter("save_audio_temp_success") | |
| return temp_file.name | |
| # | |
| # | |
| ####################################################################################################################### | |