Spaces:
Runtime error
Runtime error
| # Article_Extractor_Lib.py | |
| ######################################### | |
| # Article Extraction Library | |
| # This library is used to handle scraping and extraction of articles from web pages. | |
| # | |
| #################### | |
| # Function List | |
| # | |
| # 1. get_page_title(url) | |
| # 2. get_article_text(url) | |
| # 3. get_article_title(article_url_arg) | |
| # | |
| #################### | |
| # | |
| # Import necessary libraries | |
| import hashlib | |
| from datetime import datetime | |
| import json | |
| import logging | |
| import os | |
| import tempfile | |
| from typing import Any, Dict, List, Union, Optional, Tuple | |
| # | |
| # 3rd-Party Imports | |
| import asyncio | |
| from urllib.parse import urljoin, urlparse | |
| from xml.dom import minidom | |
| import xml.etree.ElementTree as ET | |
| # | |
| # External Libraries | |
| from bs4 import BeautifulSoup | |
| import pandas as pd | |
| from playwright.async_api import async_playwright | |
| import requests | |
| import trafilatura | |
| # | |
| # Import Local | |
| from App_Function_Libraries.DB.DB_Manager import ingest_article_to_db | |
| from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize | |
| ####################################################################################################################### | |
| # Function Definitions | |
| # | |
| ################################################################# | |
| # | |
| # Scraping-related functions: | |
| def get_page_title(url: str) -> str: | |
| try: | |
| response = requests.get(url) | |
| response.raise_for_status() | |
| soup = BeautifulSoup(response.text, 'html.parser') | |
| title_tag = soup.find('title') | |
| return title_tag.string.strip() if title_tag else "Untitled" | |
| except requests.RequestException as e: | |
| logging.error(f"Error fetching page title: {e}") | |
| return "Untitled" | |
| async def scrape_article(url: str, custom_cookies: Optional[List[Dict[str, Any]]] = None) -> Dict[str, Any]: | |
| async def fetch_html(url: str) -> str: | |
| async with async_playwright() as p: | |
| browser = await p.chromium.launch(headless=True) | |
| context = await browser.new_context( | |
| user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3" | |
| ) | |
| if custom_cookies: | |
| await context.add_cookies(custom_cookies) | |
| page = await context.new_page() | |
| await page.goto(url) | |
| await page.wait_for_load_state("networkidle") | |
| content = await page.content() | |
| await browser.close() | |
| return content | |
| def extract_article_data(html: str, url: str) -> dict: | |
| # FIXME - Add option for extracting comments/tables/images | |
| downloaded = trafilatura.extract(html, include_comments=False, include_tables=False, include_images=False) | |
| metadata = trafilatura.extract_metadata(html) | |
| result = { | |
| 'title': 'N/A', | |
| 'author': 'N/A', | |
| 'content': '', | |
| 'date': 'N/A', | |
| 'url': url, | |
| 'extraction_successful': False | |
| } | |
| if downloaded: | |
| # Add metadata to content | |
| result['content'] = ContentMetadataHandler.format_content_with_metadata( | |
| url=url, | |
| content=downloaded, | |
| pipeline="Trafilatura", | |
| additional_metadata={ | |
| "extracted_date": metadata.date if metadata and metadata.date else 'N/A', | |
| "author": metadata.author if metadata and metadata.author else 'N/A' | |
| } | |
| ) | |
| result['extraction_successful'] = True | |
| if metadata: | |
| result.update({ | |
| 'title': metadata.title if metadata.title else 'N/A', | |
| 'author': metadata.author if metadata.author else 'N/A', | |
| 'date': metadata.date if metadata.date else 'N/A' | |
| }) | |
| else: | |
| logging.warning("Metadata extraction failed.") | |
| if not downloaded: | |
| logging.warning("Content extraction failed.") | |
| return result | |
| def convert_html_to_markdown(html: str) -> str: | |
| soup = BeautifulSoup(html, 'html.parser') | |
| for para in soup.find_all('p'): | |
| # Add a newline at the end of each paragraph for markdown separation | |
| para.append('\n') | |
| # Use .get_text() with separator to keep paragraph separation | |
| return soup.get_text(separator='\n\n') | |
| html = await fetch_html(url) | |
| article_data = extract_article_data(html, url) | |
| if article_data['extraction_successful']: | |
| article_data['content'] = convert_html_to_markdown(article_data['content']) | |
| return article_data | |
| async def scrape_and_summarize_multiple( | |
| urls: str, | |
| custom_prompt_arg: Optional[str], | |
| api_name: str, | |
| api_key: Optional[str], | |
| keywords: str, | |
| custom_article_titles: Optional[str], | |
| system_message: Optional[str] = None, | |
| summarize_checkbox: bool = False, | |
| custom_cookies: Optional[List[Dict[str, Any]]] = None, | |
| temperature: float = 0.7 | |
| ) -> List[Dict[str, Any]]: | |
| urls_list = [url.strip() for url in urls.split('\n') if url.strip()] | |
| custom_titles = custom_article_titles.split('\n') if custom_article_titles else [] | |
| results = [] | |
| errors = [] | |
| # Loop over each URL to scrape and optionally summarize | |
| for i, url in enumerate(urls_list): | |
| custom_title = custom_titles[i] if i < len(custom_titles) else None | |
| try: | |
| # Scrape the article | |
| article = await scrape_article(url, custom_cookies=custom_cookies) | |
| if article and article['extraction_successful']: | |
| if custom_title: | |
| article['title'] = custom_title | |
| # If summarization is requested | |
| if summarize_checkbox: | |
| content = article.get('content', '') | |
| if content: | |
| # Prepare prompts | |
| system_message_final = system_message or "Act as a professional summarizer and summarize this article." | |
| article_custom_prompt = custom_prompt_arg or "Act as a professional summarizer and summarize this article." | |
| # Summarize the content using the summarize function | |
| summary = summarize( | |
| input_data=content, | |
| custom_prompt_arg=article_custom_prompt, | |
| api_name=api_name, | |
| api_key=api_key, | |
| temp=temperature, | |
| system_message=system_message_final | |
| ) | |
| article['summary'] = summary | |
| logging.info(f"Summary generated for URL {url}") | |
| else: | |
| article['summary'] = "No content available to summarize." | |
| logging.warning(f"No content to summarize for URL {url}") | |
| else: | |
| article['summary'] = None | |
| results.append(article) | |
| else: | |
| error_message = f"Extraction unsuccessful for URL {url}" | |
| errors.append(error_message) | |
| logging.error(error_message) | |
| except Exception as e: | |
| error_message = f"Error processing URL {i + 1} ({url}): {str(e)}" | |
| errors.append(error_message) | |
| logging.error(error_message, exc_info=True) | |
| if errors: | |
| logging.error("\n".join(errors)) | |
| if not results: | |
| logging.error("No articles were successfully scraped and summarized/analyzed.") | |
| return [] | |
| return results | |
| def scrape_and_no_summarize_then_ingest(url, keywords, custom_article_title): | |
| try: | |
| # Step 1: Scrape the article | |
| article_data = asyncio.run(scrape_article(url)) | |
| print(f"Scraped Article Data: {article_data}") # Debugging statement | |
| if not article_data: | |
| return "Failed to scrape the article." | |
| # Use the custom title if provided, otherwise use the scraped title | |
| title = custom_article_title.strip() if custom_article_title else article_data.get('title', 'Untitled') | |
| author = article_data.get('author', 'Unknown') | |
| content = article_data.get('content', '') | |
| ingestion_date = datetime.now().strftime('%Y-%m-%d') | |
| print(f"Title: {title}, Author: {author}, Content Length: {len(content)}") # Debugging statement | |
| # Step 2: Ingest the article into the database | |
| ingestion_result = ingest_article_to_db(url, title, author, content, keywords, ingestion_date, None, None) | |
| # When displaying content, we might want to strip metadata | |
| display_content = ContentMetadataHandler.strip_metadata(content) | |
| return f"Title: {title}\nAuthor: {author}\nIngestion Result: {ingestion_result}\n\nArticle Contents: {display_content}" | |
| except Exception as e: | |
| logging.error(f"Error processing URL {url}: {str(e)}") | |
| return f"Failed to process URL {url}: {str(e)}" | |
| def scrape_from_filtered_sitemap(sitemap_file: str, filter_function) -> list: | |
| """ | |
| Scrape articles from a sitemap file, applying an additional filter function. | |
| :param sitemap_file: Path to the sitemap file | |
| :param filter_function: A function that takes a URL and returns True if it should be scraped | |
| :return: List of scraped articles | |
| """ | |
| try: | |
| tree = ET.parse(sitemap_file) | |
| root = tree.getroot() | |
| articles = [] | |
| for url in root.findall('.//{http://www.sitemaps.org/schemas/sitemap/0.9}loc'): | |
| if filter_function(url.text): | |
| article_data = scrape_article(url.text) | |
| if article_data: | |
| articles.append(article_data) | |
| return articles | |
| except ET.ParseError as e: | |
| logging.error(f"Error parsing sitemap: {e}") | |
| return [] | |
| def is_content_page(url: str) -> bool: | |
| """ | |
| Determine if a URL is likely to be a content page. | |
| This is a basic implementation and may need to be adjusted based on the specific website structure. | |
| :param url: The URL to check | |
| :return: True if the URL is likely a content page, False otherwise | |
| """ | |
| #Add more specific checks here based on the website's structure | |
| # Exclude common non-content pages | |
| exclude_patterns = [ | |
| '/tag/', '/category/', '/author/', '/search/', '/page/', | |
| 'wp-content', 'wp-includes', 'wp-json', 'wp-admin', | |
| 'login', 'register', 'cart', 'checkout', 'account', | |
| '.jpg', '.png', '.gif', '.pdf', '.zip' | |
| ] | |
| return not any(pattern in url.lower() for pattern in exclude_patterns) | |
| def scrape_and_convert_with_filter(source: str, output_file: str, filter_function=is_content_page, level: int = None): | |
| """ | |
| Scrape articles from a sitemap or by URL level, apply filtering, and convert to a single markdown file. | |
| :param source: URL of the sitemap, base URL for level-based scraping, or path to a local sitemap file | |
| :param output_file: Path to save the output markdown file | |
| :param filter_function: Function to filter URLs (default is is_content_page) | |
| :param level: URL level for scraping (None if using sitemap) | |
| """ | |
| if level is not None: | |
| # Scraping by URL level | |
| articles = scrape_by_url_level(source, level) | |
| articles = [article for article in articles if filter_function(article['url'])] | |
| elif source.startswith('http'): | |
| # Scraping from online sitemap | |
| articles = scrape_from_sitemap(source) | |
| articles = [article for article in articles if filter_function(article['url'])] | |
| else: | |
| # Scraping from local sitemap file | |
| articles = scrape_from_filtered_sitemap(source, filter_function) | |
| articles = [article for article in articles if filter_function(article['url'])] | |
| markdown_content = convert_to_markdown(articles) | |
| with open(output_file, 'w', encoding='utf-8') as f: | |
| f.write(markdown_content) | |
| logging.info(f"Scraped and filtered content saved to {output_file}") | |
| async def scrape_entire_site(base_url: str) -> List[Dict]: | |
| """ | |
| Scrape the entire site by generating a temporary sitemap and extracting content from each page. | |
| :param base_url: The base URL of the site to scrape | |
| :return: A list of dictionaries containing scraped article data | |
| """ | |
| # Step 1: Collect internal links from the site | |
| links = collect_internal_links(base_url) | |
| logging.info(f"Collected {len(links)} internal links.") | |
| # Step 2: Generate the temporary sitemap | |
| temp_sitemap_path = generate_temp_sitemap_from_links(links) | |
| # Step 3: Scrape each URL in the sitemap | |
| scraped_articles = [] | |
| try: | |
| async def scrape_and_log(link): | |
| logging.info(f"Scraping {link} ...") | |
| article_data = await scrape_article(link) | |
| if article_data: | |
| logging.info(f"Title: {article_data['title']}") | |
| logging.info(f"Author: {article_data['author']}") | |
| logging.info(f"Date: {article_data['date']}") | |
| logging.info(f"Content: {article_data['content'][:500]}...") | |
| return article_data | |
| return None | |
| # Use asyncio.gather to scrape multiple articles concurrently | |
| scraped_articles = await asyncio.gather(*[scrape_and_log(link) for link in links]) | |
| # Remove any None values (failed scrapes) | |
| scraped_articles = [article for article in scraped_articles if article is not None] | |
| finally: | |
| # Clean up the temporary sitemap file | |
| os.unlink(temp_sitemap_path) | |
| logging.info("Temporary sitemap file deleted") | |
| return scraped_articles | |
| def scrape_by_url_level(base_url: str, level: int) -> list: | |
| """Scrape articles from URLs up to a certain level under the base URL.""" | |
| def get_url_level(url: str) -> int: | |
| return len(urlparse(url).path.strip('/').split('/')) | |
| links = collect_internal_links(base_url) | |
| filtered_links = [link for link in links if get_url_level(link) <= level] | |
| return [article for link in filtered_links if (article := scrape_article(link))] | |
| def scrape_from_sitemap(sitemap_url: str) -> list: | |
| """Scrape articles from a sitemap URL.""" | |
| try: | |
| response = requests.get(sitemap_url) | |
| response.raise_for_status() | |
| root = ET.fromstring(response.content) | |
| return [article for url in root.findall('.//{http://www.sitemaps.org/schemas/sitemap/0.9}loc') | |
| if (article := scrape_article(url.text))] | |
| except requests.RequestException as e: | |
| logging.error(f"Error fetching sitemap: {e}") | |
| return [] | |
| # | |
| # End of Scraping Functions | |
| ####################################################### | |
| # | |
| # Sitemap/Crawling-related Functions | |
| def collect_internal_links(base_url: str) -> set: | |
| visited = set() | |
| to_visit = {base_url} | |
| while to_visit: | |
| current_url = to_visit.pop() | |
| if current_url in visited: | |
| continue | |
| try: | |
| response = requests.get(current_url) | |
| response.raise_for_status() | |
| soup = BeautifulSoup(response.text, 'html.parser') | |
| # Collect internal links | |
| for link in soup.find_all('a', href=True): | |
| full_url = urljoin(base_url, link['href']) | |
| # Only process links within the same domain | |
| if urlparse(full_url).netloc == urlparse(base_url).netloc: | |
| if full_url not in visited: | |
| to_visit.add(full_url) | |
| visited.add(current_url) | |
| except requests.RequestException as e: | |
| logging.error(f"Error visiting {current_url}: {e}") | |
| continue | |
| return visited | |
| def generate_temp_sitemap_from_links(links: set) -> str: | |
| """ | |
| Generate a temporary sitemap file from collected links and return its path. | |
| :param links: A set of URLs to include in the sitemap | |
| :return: Path to the temporary sitemap file | |
| """ | |
| # Create the root element | |
| urlset = ET.Element("urlset") | |
| urlset.set("xmlns", "http://www.sitemaps.org/schemas/sitemap/0.9") | |
| # Add each link to the sitemap | |
| for link in links: | |
| url = ET.SubElement(urlset, "url") | |
| loc = ET.SubElement(url, "loc") | |
| loc.text = link | |
| lastmod = ET.SubElement(url, "lastmod") | |
| lastmod.text = datetime.now().strftime("%Y-%m-%d") | |
| changefreq = ET.SubElement(url, "changefreq") | |
| changefreq.text = "daily" | |
| priority = ET.SubElement(url, "priority") | |
| priority.text = "0.5" | |
| # Create the tree and get it as a string | |
| xml_string = ET.tostring(urlset, 'utf-8') | |
| # Pretty print the XML | |
| pretty_xml = minidom.parseString(xml_string).toprettyxml(indent=" ") | |
| # Create a temporary file | |
| with tempfile.NamedTemporaryFile(mode="w", suffix=".xml", delete=False) as temp_file: | |
| temp_file.write(pretty_xml) | |
| temp_file_path = temp_file.name | |
| logging.info(f"Temporary sitemap created at: {temp_file_path}") | |
| return temp_file_path | |
| def generate_sitemap_for_url(url: str) -> List[Dict[str, str]]: | |
| """ | |
| Generate a sitemap for the given URL using the create_filtered_sitemap function. | |
| Args: | |
| url (str): The base URL to generate the sitemap for | |
| Returns: | |
| List[Dict[str, str]]: A list of dictionaries, each containing 'url' and 'title' keys | |
| """ | |
| with tempfile.NamedTemporaryFile(mode="w+", suffix=".xml", delete=False) as temp_file: | |
| create_filtered_sitemap(url, temp_file.name, is_content_page) | |
| temp_file.seek(0) | |
| tree = ET.parse(temp_file.name) | |
| root = tree.getroot() | |
| sitemap = [] | |
| for url_elem in root.findall(".//{http://www.sitemaps.org/schemas/sitemap/0.9}url"): | |
| loc = url_elem.find("{http://www.sitemaps.org/schemas/sitemap/0.9}loc").text | |
| sitemap.append({"url": loc, "title": loc.split("/")[-1] or url}) # Use the last part of the URL as a title | |
| return sitemap | |
| def create_filtered_sitemap(base_url: str, output_file: str, filter_function): | |
| """ | |
| Create a sitemap from internal links and filter them based on a custom function. | |
| :param base_url: The base URL of the website | |
| :param output_file: The file to save the sitemap to | |
| :param filter_function: A function that takes a URL and returns True if it should be included | |
| """ | |
| links = collect_internal_links(base_url) | |
| filtered_links = set(filter(filter_function, links)) | |
| root = ET.Element("urlset") | |
| root.set("xmlns", "http://www.sitemaps.org/schemas/sitemap/0.9") | |
| for link in filtered_links: | |
| url = ET.SubElement(root, "url") | |
| loc = ET.SubElement(url, "loc") | |
| loc.text = link | |
| tree = ET.ElementTree(root) | |
| tree.write(output_file, encoding='utf-8', xml_declaration=True) | |
| print(f"Filtered sitemap saved to {output_file}") | |
| # | |
| # End of Crawling Functions | |
| ################################################################# | |
| # | |
| # Utility Functions | |
| def convert_to_markdown(articles: list) -> str: | |
| """Convert a list of article data into a single markdown document.""" | |
| markdown = "" | |
| for article in articles: | |
| markdown += f"# {article['title']}\n\n" | |
| markdown += f"Author: {article['author']}\n" | |
| markdown += f"Date: {article['date']}\n\n" | |
| markdown += f"{article['content']}\n\n" | |
| markdown += "---\n\n" # Separator between articles | |
| return markdown | |
| def compute_content_hash(content: str) -> str: | |
| return hashlib.sha256(content.encode('utf-8')).hexdigest() | |
| def load_hashes(filename: str) -> Dict[str, str]: | |
| if os.path.exists(filename): | |
| with open(filename, 'r') as f: | |
| return json.load(f) | |
| else: | |
| return {} | |
| def save_hashes(hashes: Dict[str, str], filename: str): | |
| with open(filename, 'w') as f: | |
| json.dump(hashes, f) | |
| def has_page_changed(url: str, new_hash: str, stored_hashes: Dict[str, str]) -> bool: | |
| old_hash = stored_hashes.get(url) | |
| return old_hash != new_hash | |
| # | |
| # | |
| ################################################### | |
| # | |
| # Bookmark Parsing Functions | |
| def parse_chromium_bookmarks(json_data: dict) -> Dict[str, Union[str, List[str]]]: | |
| """ | |
| Parse Chromium-based browser bookmarks from JSON data. | |
| :param json_data: The JSON data from the bookmarks file | |
| :return: A dictionary with bookmark names as keys and URLs as values or lists of URLs if duplicates exist | |
| """ | |
| bookmarks = {} | |
| def recurse_bookmarks(nodes): | |
| for node in nodes: | |
| if node.get('type') == 'url': | |
| name = node.get('name') | |
| url = node.get('url') | |
| if name and url: | |
| if name in bookmarks: | |
| if isinstance(bookmarks[name], list): | |
| bookmarks[name].append(url) | |
| else: | |
| bookmarks[name] = [bookmarks[name], url] | |
| else: | |
| bookmarks[name] = url | |
| elif node.get('type') == 'folder' and 'children' in node: | |
| recurse_bookmarks(node['children']) | |
| # Chromium bookmarks have a 'roots' key | |
| if 'roots' in json_data: | |
| for root in json_data['roots'].values(): | |
| if 'children' in root: | |
| recurse_bookmarks(root['children']) | |
| else: | |
| recurse_bookmarks(json_data.get('children', [])) | |
| return bookmarks | |
| def parse_firefox_bookmarks(html_content: str) -> Dict[str, Union[str, List[str]]]: | |
| """ | |
| Parse Firefox bookmarks from HTML content. | |
| :param html_content: The HTML content from the bookmarks file | |
| :return: A dictionary with bookmark names as keys and URLs as values or lists of URLs if duplicates exist | |
| """ | |
| bookmarks = {} | |
| soup = BeautifulSoup(html_content, 'html.parser') | |
| # Firefox stores bookmarks within <a> tags inside <dt> | |
| for a in soup.find_all('a'): | |
| name = a.get_text() | |
| url = a.get('href') | |
| if name and url: | |
| if name in bookmarks: | |
| if isinstance(bookmarks[name], list): | |
| bookmarks[name].append(url) | |
| else: | |
| bookmarks[name] = [bookmarks[name], url] | |
| else: | |
| bookmarks[name] = url | |
| return bookmarks | |
| def load_bookmarks(file_path: str) -> Dict[str, Union[str, List[str]]]: | |
| """ | |
| Load bookmarks from a file (JSON for Chrome/Edge or HTML for Firefox). | |
| :param file_path: Path to the bookmarks file | |
| :return: A dictionary with bookmark names as keys and URLs as values or lists of URLs if duplicates exist | |
| :raises ValueError: If the file format is unsupported or parsing fails | |
| """ | |
| if not os.path.isfile(file_path): | |
| logging.error(f"File '{file_path}' does not exist.") | |
| raise FileNotFoundError(f"File '{file_path}' does not exist.") | |
| _, ext = os.path.splitext(file_path) | |
| ext = ext.lower() | |
| if ext == '.json' or ext == '': | |
| # Attempt to parse as JSON (Chrome/Edge) | |
| try: | |
| with open(file_path, 'r', encoding='utf-8') as f: | |
| json_data = json.load(f) | |
| return parse_chromium_bookmarks(json_data) | |
| except json.JSONDecodeError: | |
| logging.error("Failed to parse JSON. Ensure the file is a valid Chromium bookmarks JSON file.") | |
| raise ValueError("Invalid JSON format for Chromium bookmarks.") | |
| elif ext in ['.html', '.htm']: | |
| # Parse as HTML (Firefox) | |
| try: | |
| with open(file_path, 'r', encoding='utf-8') as f: | |
| html_content = f.read() | |
| return parse_firefox_bookmarks(html_content) | |
| except Exception as e: | |
| logging.error(f"Failed to parse HTML bookmarks: {e}") | |
| raise ValueError(f"Failed to parse HTML bookmarks: {e}") | |
| else: | |
| logging.error("Unsupported file format. Please provide a JSON (Chrome/Edge) or HTML (Firefox) bookmarks file.") | |
| raise ValueError("Unsupported file format for bookmarks.") | |
| def collect_bookmarks(file_path: str) -> Dict[str, Union[str, List[str]]]: | |
| """ | |
| Collect bookmarks from the provided bookmarks file and return a dictionary. | |
| :param file_path: Path to the bookmarks file | |
| :return: Dictionary with bookmark names as keys and URLs as values or lists of URLs if duplicates exist | |
| """ | |
| try: | |
| bookmarks = load_bookmarks(file_path) | |
| logging.info(f"Successfully loaded {len(bookmarks)} bookmarks from '{file_path}'.") | |
| return bookmarks | |
| except (FileNotFoundError, ValueError) as e: | |
| logging.error(f"Error loading bookmarks: {e}") | |
| return {} | |
| def parse_csv_urls(file_path: str) -> Dict[str, Union[str, List[str]]]: | |
| """ | |
| Parse URLs from a CSV file. The CSV should have at minimum a 'url' column, | |
| and optionally a 'title' or 'name' column. | |
| :param file_path: Path to the CSV file | |
| :return: Dictionary with titles/names as keys and URLs as values | |
| """ | |
| try: | |
| # Read CSV file | |
| df = pd.read_csv(file_path) | |
| # Check if required columns exist | |
| if 'url' not in df.columns: | |
| raise ValueError("CSV must contain a 'url' column") | |
| # Initialize result dictionary | |
| urls_dict = {} | |
| # Determine which column to use as key | |
| key_column = next((col for col in ['title', 'name'] if col in df.columns), None) | |
| for idx in range(len(df)): | |
| url = df.iloc[idx]['url'].strip() | |
| # Use title/name if available, otherwise use URL as key | |
| if key_column: | |
| key = df.iloc[idx][key_column].strip() | |
| else: | |
| key = f"Article {idx + 1}" | |
| # Handle duplicate keys | |
| if key in urls_dict: | |
| if isinstance(urls_dict[key], list): | |
| urls_dict[key].append(url) | |
| else: | |
| urls_dict[key] = [urls_dict[key], url] | |
| else: | |
| urls_dict[key] = url | |
| return urls_dict | |
| except pd.errors.EmptyDataError: | |
| logging.error("The CSV file is empty") | |
| return {} | |
| except Exception as e: | |
| logging.error(f"Error parsing CSV file: {str(e)}") | |
| return {} | |
| def collect_urls_from_file(file_path: str) -> Dict[str, Union[str, List[str]]]: | |
| """ | |
| Unified function to collect URLs from either bookmarks or CSV files. | |
| :param file_path: Path to the file (bookmarks or CSV) | |
| :return: Dictionary with names as keys and URLs as values | |
| """ | |
| _, ext = os.path.splitext(file_path) | |
| ext = ext.lower() | |
| if ext == '.csv': | |
| return parse_csv_urls(file_path) | |
| else: | |
| return collect_bookmarks(file_path) | |
| # Usage: | |
| # from Article_Extractor_Lib import collect_bookmarks | |
| # | |
| # # Path to your bookmarks file | |
| # # For Chrome or Edge (JSON format) | |
| # chromium_bookmarks_path = "/path/to/Bookmarks" | |
| # | |
| # # For Firefox (HTML format) | |
| # firefox_bookmarks_path = "/path/to/bookmarks.html" | |
| # | |
| # # Collect bookmarks from Chromium-based browser | |
| # chromium_bookmarks = collect_bookmarks(chromium_bookmarks_path) | |
| # print("Chromium Bookmarks:") | |
| # for name, url in chromium_bookmarks.items(): | |
| # print(f"{name}: {url}") | |
| # | |
| # # Collect bookmarks from Firefox | |
| # firefox_bookmarks = collect_bookmarks(firefox_bookmarks_path) | |
| # print("\nFirefox Bookmarks:") | |
| # for name, url in firefox_bookmarks.items(): | |
| # print(f"{name}: {url}") | |
| # | |
| # End of Bookmarking Parsing Functions | |
| ##################################################################### | |
| ##################################################################### | |
| # | |
| # Article Scraping Metadata Functions | |
| class ContentMetadataHandler: | |
| """Handles the addition and parsing of metadata for scraped content.""" | |
| METADATA_START = "[METADATA]" | |
| METADATA_END = "[/METADATA]" | |
| def format_content_with_metadata( | |
| url: str, | |
| content: str, | |
| pipeline: str = "Trafilatura", | |
| additional_metadata: Optional[Dict[str, Any]] = None | |
| ) -> str: | |
| """ | |
| Format content with metadata header. | |
| Args: | |
| url: The source URL | |
| content: The scraped content | |
| pipeline: The scraping pipeline used | |
| additional_metadata: Optional dictionary of additional metadata to include | |
| Returns: | |
| Formatted content with metadata header | |
| """ | |
| metadata = { | |
| "url": url, | |
| "ingestion_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
| "content_hash": hashlib.sha256(content.encode('utf-8')).hexdigest(), | |
| "scraping_pipeline": pipeline | |
| } | |
| # Add any additional metadata | |
| if additional_metadata: | |
| metadata.update(additional_metadata) | |
| formatted_content = f"""{ContentMetadataHandler.METADATA_START} | |
| {json.dumps(metadata, indent=2)} | |
| {ContentMetadataHandler.METADATA_END} | |
| {content}""" | |
| return formatted_content | |
| def extract_metadata(content: str) -> Tuple[Dict[str, Any], str]: | |
| """ | |
| Extract metadata and content separately. | |
| Args: | |
| content: The full content including metadata | |
| Returns: | |
| Tuple of (metadata dict, clean content) | |
| """ | |
| try: | |
| metadata_start = content.index(ContentMetadataHandler.METADATA_START) + len( | |
| ContentMetadataHandler.METADATA_START) | |
| metadata_end = content.index(ContentMetadataHandler.METADATA_END) | |
| metadata_json = content[metadata_start:metadata_end].strip() | |
| metadata = json.loads(metadata_json) | |
| clean_content = content[metadata_end + len(ContentMetadataHandler.METADATA_END):].strip() | |
| return metadata, clean_content | |
| except (ValueError, json.JSONDecodeError) as e: | |
| return {}, content | |
| def has_metadata(content: str) -> bool: | |
| """ | |
| Check if content contains metadata. | |
| Args: | |
| content: The content to check | |
| Returns: | |
| bool: True if metadata is present | |
| """ | |
| return (ContentMetadataHandler.METADATA_START in content and | |
| ContentMetadataHandler.METADATA_END in content) | |
| def strip_metadata(content: str) -> str: | |
| """ | |
| Remove metadata from content if present. | |
| Args: | |
| content: The content to strip metadata from | |
| Returns: | |
| Content without metadata | |
| """ | |
| try: | |
| metadata_end = content.index(ContentMetadataHandler.METADATA_END) | |
| return content[metadata_end + len(ContentMetadataHandler.METADATA_END):].strip() | |
| except ValueError: | |
| return content | |
| def get_content_hash(content: str) -> str: | |
| """ | |
| Get hash of content without metadata. | |
| Args: | |
| content: The content to hash | |
| Returns: | |
| SHA-256 hash of the clean content | |
| """ | |
| clean_content = ContentMetadataHandler.strip_metadata(content) | |
| return hashlib.sha256(clean_content.encode('utf-8')).hexdigest() | |
| def content_changed(old_content: str, new_content: str) -> bool: | |
| """ | |
| Check if content has changed by comparing hashes. | |
| Args: | |
| old_content: Previous version of content | |
| new_content: New version of content | |
| Returns: | |
| bool: True if content has changed | |
| """ | |
| old_hash = ContentMetadataHandler.get_content_hash(old_content) | |
| new_hash = ContentMetadataHandler.get_content_hash(new_content) | |
| return old_hash != new_hash | |
| # | |
| # End of Article_Extractor_Lib.py | |
| ####################################################################################################################### | |