Spaces:
Runtime error
Runtime error
Update App_Function_Libraries/RAG/ChromaDB_Library.py
Browse files
App_Function_Libraries/RAG/ChromaDB_Library.py
CHANGED
|
@@ -1,287 +1,290 @@
|
|
| 1 |
-
import configparser
|
| 2 |
-
import logging
|
| 3 |
-
import sqlite3
|
| 4 |
-
from typing import List, Dict, Any
|
| 5 |
-
|
| 6 |
-
import chromadb
|
| 7 |
-
import requests
|
| 8 |
-
from chromadb import Settings
|
| 9 |
-
|
| 10 |
-
from App_Function_Libraries.Chunk_Lib import improved_chunking_process
|
| 11 |
-
from App_Function_Libraries.DB.DB_Manager import add_media_chunk, update_fts_for_media
|
| 12 |
-
from App_Function_Libraries.LLM_API_Calls import get_openai_embeddings
|
| 13 |
-
|
| 14 |
-
#######################################################################################################################
|
| 15 |
-
#
|
| 16 |
-
# Functions for ChromaDB
|
| 17 |
-
|
| 18 |
-
# Get ChromaDB settings
|
| 19 |
-
# Load configuration
|
| 20 |
-
config = configparser.ConfigParser()
|
| 21 |
-
config.read('config.txt')
|
| 22 |
-
chroma_db_path = config.get('Database', 'chroma_db_path', fallback='chroma_db')
|
| 23 |
-
chroma_client = chromadb.PersistentClient(path=chroma_db_path, settings=Settings(anonymized_telemetry=False))
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
'
|
| 37 |
-
'
|
| 38 |
-
'
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
#
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
if
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
#
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
#
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
# Store the
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
#
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
if
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
#
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
return
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
'
|
| 226 |
-
'
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
|
|
|
|
|
|
|
|
|
| 287 |
#######################################################################################################################
|
|
|
|
| 1 |
+
import configparser
|
| 2 |
+
import logging
|
| 3 |
+
import sqlite3
|
| 4 |
+
from typing import List, Dict, Any
|
| 5 |
+
|
| 6 |
+
import chromadb
|
| 7 |
+
import requests
|
| 8 |
+
from chromadb import Settings
|
| 9 |
+
|
| 10 |
+
from App_Function_Libraries.Chunk_Lib import improved_chunking_process
|
| 11 |
+
from App_Function_Libraries.DB.DB_Manager import add_media_chunk, update_fts_for_media
|
| 12 |
+
from App_Function_Libraries.LLM_API_Calls import get_openai_embeddings
|
| 13 |
+
|
| 14 |
+
#######################################################################################################################
|
| 15 |
+
#
|
| 16 |
+
# Functions for ChromaDB
|
| 17 |
+
|
| 18 |
+
# Get ChromaDB settings
|
| 19 |
+
# Load configuration
|
| 20 |
+
config = configparser.ConfigParser()
|
| 21 |
+
config.read('config.txt')
|
| 22 |
+
chroma_db_path = config.get('Database', 'chroma_db_path', fallback='chroma_db')
|
| 23 |
+
chroma_client = chromadb.PersistentClient(path=chroma_db_path, settings=Settings(anonymized_telemetry=False))
|
| 24 |
+
|
| 25 |
+
import os
|
| 26 |
+
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
| 27 |
+
|
| 28 |
+
# Get embedding settings
|
| 29 |
+
embedding_provider = config.get('Embeddings', 'provider', fallback='openai')
|
| 30 |
+
embedding_model = config.get('Embeddings', 'model', fallback='text-embedding-3-small')
|
| 31 |
+
embedding_api_key = config.get('Embeddings', 'api_key', fallback='')
|
| 32 |
+
embedding_api_url = config.get('Embeddings', 'api_url', fallback='')
|
| 33 |
+
|
| 34 |
+
# Get chunking options
|
| 35 |
+
chunk_options = {
|
| 36 |
+
'method': config.get('Chunking', 'method', fallback='words'),
|
| 37 |
+
'max_size': config.getint('Chunking', 'max_size', fallback=400),
|
| 38 |
+
'overlap': config.getint('Chunking', 'overlap', fallback=200),
|
| 39 |
+
'adaptive': config.getboolean('Chunking', 'adaptive', fallback=False),
|
| 40 |
+
'multi_level': config.getboolean('Chunking', 'multi_level', fallback=False),
|
| 41 |
+
'language': config.get('Chunking', 'language', fallback='english')
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def auto_update_chroma_embeddings(media_id: int, content: str):
|
| 46 |
+
"""
|
| 47 |
+
Automatically update ChromaDB embeddings when a new item is ingested into the SQLite database.
|
| 48 |
+
|
| 49 |
+
:param media_id: The ID of the newly ingested media item
|
| 50 |
+
:param content: The content of the newly ingested media item
|
| 51 |
+
"""
|
| 52 |
+
collection_name = f"media_{media_id}"
|
| 53 |
+
|
| 54 |
+
# Initialize or get the ChromaDB collection
|
| 55 |
+
collection = chroma_client.get_or_create_collection(name=collection_name)
|
| 56 |
+
|
| 57 |
+
# Check if embeddings already exist for this media_id
|
| 58 |
+
existing_embeddings = collection.get(ids=[f"{media_id}_chunk_{i}" for i in range(len(content))])
|
| 59 |
+
|
| 60 |
+
if existing_embeddings and len(existing_embeddings) > 0:
|
| 61 |
+
logging.info(f"Embeddings already exist for media ID {media_id}, skipping...")
|
| 62 |
+
else:
|
| 63 |
+
# Process and store content if embeddings do not already exist
|
| 64 |
+
process_and_store_content(content, collection_name, media_id)
|
| 65 |
+
logging.info(f"Updated ChromaDB embeddings for media ID: {media_id}")
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
# Function to process content, create chunks, embeddings, and store in ChromaDB and SQLite
|
| 69 |
+
def process_and_store_content(content: str, collection_name: str, media_id: int):
|
| 70 |
+
# Process the content into chunks
|
| 71 |
+
chunks = improved_chunking_process(content, chunk_options)
|
| 72 |
+
texts = [chunk['text'] for chunk in chunks]
|
| 73 |
+
|
| 74 |
+
# Generate embeddings for each chunk
|
| 75 |
+
embeddings = [create_embedding(text) for text in texts]
|
| 76 |
+
|
| 77 |
+
# Create unique IDs for each chunk using the media_id and chunk index
|
| 78 |
+
ids = [f"{media_id}_chunk_{i}" for i in range(len(texts))]
|
| 79 |
+
|
| 80 |
+
# Store the texts, embeddings, and IDs in ChromaDB
|
| 81 |
+
store_in_chroma(collection_name, texts, embeddings, ids)
|
| 82 |
+
|
| 83 |
+
# Store the chunk metadata in SQLite
|
| 84 |
+
for i, chunk in enumerate(chunks):
|
| 85 |
+
add_media_chunk(media_id, chunk['text'], chunk['start'], chunk['end'], ids[i])
|
| 86 |
+
|
| 87 |
+
# Update the FTS table
|
| 88 |
+
update_fts_for_media(media_id)
|
| 89 |
+
|
| 90 |
+
# Function to store documents and their embeddings in ChromaDB
|
| 91 |
+
def store_in_chroma(collection_name: str, texts: List[str], embeddings: List[List[float]], ids: List[str]):
|
| 92 |
+
collection = chroma_client.get_or_create_collection(name=collection_name)
|
| 93 |
+
collection.add(
|
| 94 |
+
documents=texts,
|
| 95 |
+
embeddings=embeddings,
|
| 96 |
+
ids=ids
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
# Function to perform vector search using ChromaDB
|
| 100 |
+
def vector_search(collection_name: str, query: str, k: int = 10) -> List[str]:
|
| 101 |
+
query_embedding = create_embedding(query)
|
| 102 |
+
collection = chroma_client.get_collection(name=collection_name)
|
| 103 |
+
results = collection.query(
|
| 104 |
+
query_embeddings=[query_embedding],
|
| 105 |
+
n_results=k
|
| 106 |
+
)
|
| 107 |
+
return results['documents'][0]
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def create_embedding(text: str) -> List[float]:
|
| 111 |
+
global embedding_provider, embedding_model, embedding_api_url, embedding_api_key
|
| 112 |
+
|
| 113 |
+
if embedding_provider == 'openai':
|
| 114 |
+
return get_openai_embeddings(text, embedding_model)
|
| 115 |
+
elif embedding_provider == 'local':
|
| 116 |
+
response = requests.post(
|
| 117 |
+
embedding_api_url,
|
| 118 |
+
json={"text": text, "model": embedding_model},
|
| 119 |
+
headers={"Authorization": f"Bearer {embedding_api_key}"}
|
| 120 |
+
)
|
| 121 |
+
return response.json()['embedding']
|
| 122 |
+
elif embedding_provider == 'huggingface':
|
| 123 |
+
from transformers import AutoTokenizer, AutoModel
|
| 124 |
+
import torch
|
| 125 |
+
|
| 126 |
+
tokenizer = AutoTokenizer.from_pretrained(embedding_model)
|
| 127 |
+
model = AutoModel.from_pretrained(embedding_model)
|
| 128 |
+
|
| 129 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 130 |
+
with torch.no_grad():
|
| 131 |
+
outputs = model(**inputs)
|
| 132 |
+
|
| 133 |
+
# Use the mean of the last hidden state as the sentence embedding
|
| 134 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
| 135 |
+
return embeddings[0].tolist() # Convert to list for consistency
|
| 136 |
+
else:
|
| 137 |
+
raise ValueError(f"Unsupported embedding provider: {embedding_provider}")
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def create_all_embeddings(api_choice: str, model_or_url: str) -> str:
|
| 141 |
+
try:
|
| 142 |
+
all_content = get_all_content_from_database()
|
| 143 |
+
|
| 144 |
+
if not all_content:
|
| 145 |
+
return "No content found in the database."
|
| 146 |
+
|
| 147 |
+
texts_to_embed = []
|
| 148 |
+
embeddings_to_store = []
|
| 149 |
+
ids_to_store = []
|
| 150 |
+
collection_name = "all_content_embeddings"
|
| 151 |
+
|
| 152 |
+
# Initialize or get the ChromaDB collection
|
| 153 |
+
collection = chroma_client.get_or_create_collection(name=collection_name)
|
| 154 |
+
|
| 155 |
+
for content_item in all_content:
|
| 156 |
+
media_id = content_item['id']
|
| 157 |
+
text = content_item['content']
|
| 158 |
+
|
| 159 |
+
# Check if the embedding already exists in ChromaDB
|
| 160 |
+
embedding_exists = collection.get(ids=[f"doc_{media_id}"])
|
| 161 |
+
|
| 162 |
+
if embedding_exists:
|
| 163 |
+
logging.info(f"Embedding already exists for media ID {media_id}, skipping...")
|
| 164 |
+
continue # Skip if embedding already exists
|
| 165 |
+
|
| 166 |
+
# Create the embedding
|
| 167 |
+
if api_choice == "openai":
|
| 168 |
+
embedding = create_openai_embedding(text, model_or_url)
|
| 169 |
+
else: # Llama.cpp
|
| 170 |
+
embedding = create_llamacpp_embedding(text, model_or_url)
|
| 171 |
+
|
| 172 |
+
# Collect the text, embedding, and ID for batch storage
|
| 173 |
+
texts_to_embed.append(text)
|
| 174 |
+
embeddings_to_store.append(embedding)
|
| 175 |
+
ids_to_store.append(f"doc_{media_id}")
|
| 176 |
+
|
| 177 |
+
# Store all new embeddings in ChromaDB
|
| 178 |
+
if texts_to_embed and embeddings_to_store:
|
| 179 |
+
store_in_chroma(collection_name, texts_to_embed, embeddings_to_store, ids_to_store)
|
| 180 |
+
|
| 181 |
+
return "Embeddings created and stored successfully for all new content."
|
| 182 |
+
except Exception as e:
|
| 183 |
+
logging.error(f"Error during embedding creation: {str(e)}")
|
| 184 |
+
return f"Error: {str(e)}"
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def create_openai_embedding(text: str, model: str) -> List[float]:
|
| 188 |
+
openai_api_key = config['API']['openai_api_key']
|
| 189 |
+
embedding = get_openai_embeddings(text, model)
|
| 190 |
+
return embedding
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
def create_llamacpp_embedding(text: str, api_url: str) -> List[float]:
|
| 194 |
+
response = requests.post(
|
| 195 |
+
api_url,
|
| 196 |
+
json={"input": text}
|
| 197 |
+
)
|
| 198 |
+
if response.status_code == 200:
|
| 199 |
+
return response.json()['embedding']
|
| 200 |
+
else:
|
| 201 |
+
raise Exception(f"Error from Llama.cpp API: {response.text}")
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def get_all_content_from_database() -> List[Dict[str, Any]]:
|
| 205 |
+
"""
|
| 206 |
+
Retrieve all media content from the database that requires embedding.
|
| 207 |
+
|
| 208 |
+
Returns:
|
| 209 |
+
List[Dict[str, Any]]: A list of dictionaries, each containing the media ID, content, title, and other relevant fields.
|
| 210 |
+
"""
|
| 211 |
+
try:
|
| 212 |
+
from App_Function_Libraries.DB.DB_Manager import db
|
| 213 |
+
with db.get_connection() as conn:
|
| 214 |
+
cursor = conn.cursor()
|
| 215 |
+
cursor.execute("""
|
| 216 |
+
SELECT id, content, title, author, type
|
| 217 |
+
FROM Media
|
| 218 |
+
WHERE is_trash = 0 -- Exclude items marked as trash
|
| 219 |
+
""")
|
| 220 |
+
media_items = cursor.fetchall()
|
| 221 |
+
|
| 222 |
+
# Convert the results into a list of dictionaries
|
| 223 |
+
all_content = [
|
| 224 |
+
{
|
| 225 |
+
'id': item[0],
|
| 226 |
+
'content': item[1],
|
| 227 |
+
'title': item[2],
|
| 228 |
+
'author': item[3],
|
| 229 |
+
'type': item[4]
|
| 230 |
+
}
|
| 231 |
+
for item in media_items
|
| 232 |
+
]
|
| 233 |
+
|
| 234 |
+
return all_content
|
| 235 |
+
|
| 236 |
+
except sqlite3.Error as e:
|
| 237 |
+
logging.error(f"Error retrieving all content from database: {e}")
|
| 238 |
+
from App_Function_Libraries.DB.SQLite_DB import DatabaseError
|
| 239 |
+
raise DatabaseError(f"Error retrieving all content from database: {e}")
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def store_in_chroma_with_citation(collection_name: str, texts: List[str], embeddings: List[List[float]], ids: List[str], sources: List[str]):
|
| 243 |
+
collection = chroma_client.get_or_create_collection(name=collection_name)
|
| 244 |
+
collection.add(
|
| 245 |
+
documents=texts,
|
| 246 |
+
embeddings=embeddings,
|
| 247 |
+
ids=ids,
|
| 248 |
+
metadatas=[{'source': source} for source in sources]
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def check_embedding_status(selected_item):
|
| 253 |
+
if not selected_item:
|
| 254 |
+
return "Please select an item", ""
|
| 255 |
+
item_id = selected_item.split('(')[0].strip()
|
| 256 |
+
collection = chroma_client.get_or_create_collection(name="all_content_embeddings")
|
| 257 |
+
result = collection.get(ids=[f"doc_{item_id}"])
|
| 258 |
+
if result['ids']:
|
| 259 |
+
embedding = result['embeddings'][0]
|
| 260 |
+
embedding_preview = str(embedding[:50]) # Convert first 50 elements to string
|
| 261 |
+
return f"Embedding exists for item: {item_id}", f"Embedding preview: {embedding_preview}..."
|
| 262 |
+
else:
|
| 263 |
+
return f"No embedding found for item: {item_id}", ""
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def create_new_embedding(selected_item, api_choice, openai_model, llamacpp_url):
|
| 267 |
+
if not selected_item:
|
| 268 |
+
return "Please select an item"
|
| 269 |
+
item_id = selected_item.split('(')[0].strip()
|
| 270 |
+
items = get_all_content_from_database()
|
| 271 |
+
item = next((item for item in items if item['title'] == item_id), None)
|
| 272 |
+
if not item:
|
| 273 |
+
return f"Item not found: {item_id}"
|
| 274 |
+
|
| 275 |
+
try:
|
| 276 |
+
if api_choice == "OpenAI":
|
| 277 |
+
embedding = create_embedding(item['content'])
|
| 278 |
+
else: # Llama.cpp
|
| 279 |
+
embedding = create_embedding(item['content'])
|
| 280 |
+
|
| 281 |
+
collection_name = "all_content_embeddings"
|
| 282 |
+
store_in_chroma(collection_name, [item['content']], [embedding], [f"doc_{item['id']}"])
|
| 283 |
+
return f"New embedding created and stored for item: {item_id}"
|
| 284 |
+
except Exception as e:
|
| 285 |
+
return f"Error creating embedding: {str(e)}"
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
#
|
| 289 |
+
# End of Functions for ChromaDB
|
| 290 |
#######################################################################################################################
|