Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,17 +3,19 @@
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
-
|
| 7 |
-
model_name = "
|
|
|
|
|
|
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 10 |
|
| 11 |
-
# إنشاء الـ pipeline
|
| 12 |
sentiment_analyzer = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer, return_all_scores=True)
|
| 13 |
|
| 14 |
# دالة التحليل
|
| 15 |
def analyze_sentiment(text):
|
| 16 |
-
results = sentiment_analyzer(text)[0]
|
| 17 |
output = ""
|
| 18 |
for r in results:
|
| 19 |
label = r["label"]
|
|
@@ -33,8 +35,7 @@ iface = gr.Interface(
|
|
| 33 |
inputs=gr.Textbox(lines=2, placeholder="متن خود را وارد کنید..."),
|
| 34 |
outputs="text",
|
| 35 |
title="تحلیل احساسات متون فارسی",
|
| 36 |
-
description="نمایش احتمال مثبت، منفی و خنثی بودن متن
|
| 37 |
)
|
| 38 |
|
| 39 |
-
iface.launch()
|
| 40 |
-
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
+
|
| 7 |
+
model_name = "HooshvareLab/bert-fa-base-uncased-sentiment-snappfood"
|
| 8 |
+
|
| 9 |
+
# تحميل الموديل والتوكنيزر
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 11 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 12 |
|
| 13 |
+
# إنشاء الـ pipeline مع عرض كل النتائج
|
| 14 |
sentiment_analyzer = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer, return_all_scores=True)
|
| 15 |
|
| 16 |
# دالة التحليل
|
| 17 |
def analyze_sentiment(text):
|
| 18 |
+
results = sentiment_analyzer(text)[0]
|
| 19 |
output = ""
|
| 20 |
for r in results:
|
| 21 |
label = r["label"]
|
|
|
|
| 35 |
inputs=gr.Textbox(lines=2, placeholder="متن خود را وارد کنید..."),
|
| 36 |
outputs="text",
|
| 37 |
title="تحلیل احساسات متون فارسی",
|
| 38 |
+
description="نمایش احتمال مثبت، منفی و خنثی بودن متن فارسی با مدل Snapfood."
|
| 39 |
)
|
| 40 |
|
| 41 |
+
iface.launch()
|
|
|