Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,43 +3,41 @@
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
-
#
|
| 7 |
model_name = "HooshvareLab/bert-fa-base-uncased-sentiment-snappfood"
|
| 8 |
|
| 9 |
-
# تحميل الموديل والتوكنيزر
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 11 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 12 |
|
| 13 |
-
|
| 14 |
-
sentiment_analyzer = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer, return_all_scores=True)
|
| 15 |
|
| 16 |
-
# دالة التحليل
|
| 17 |
def analyze_sentiment(text):
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
# احتمال تكون التسميات LABEL_0 / LABEL_1 / LABEL_2
|
| 21 |
-
labels_map = {
|
| 22 |
-
"LABEL_0": "منفی (سلبي)",
|
| 23 |
-
"LABEL_1": "خنثی (محايد)",
|
| 24 |
-
"LABEL_2": "مثبت (إيجابي)"
|
| 25 |
-
}
|
| 26 |
-
|
| 27 |
-
output = ""
|
| 28 |
-
for r in results:
|
| 29 |
-
label = r["label"]
|
| 30 |
-
label_fa = labels_map.get(label, label)
|
| 31 |
-
score = round(r["score"], 3)
|
| 32 |
-
output += f"{label_fa}: {score}\n"
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
return output
|
| 35 |
|
| 36 |
-
# واجهة Gradio
|
| 37 |
iface = gr.Interface(
|
| 38 |
fn=analyze_sentiment,
|
| 39 |
inputs=gr.Textbox(lines=2, placeholder="متن خود را وارد کنید..."),
|
| 40 |
outputs="text",
|
| 41 |
-
title="تحلیل احساسات
|
| 42 |
-
description="
|
| 43 |
)
|
| 44 |
|
| 45 |
iface.launch()
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
+
# تحميل الموديل الفارسي
|
| 7 |
model_name = "HooshvareLab/bert-fa-base-uncased-sentiment-snappfood"
|
| 8 |
|
|
|
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 10 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 11 |
|
| 12 |
+
sentiment_analyzer = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
|
|
|
| 13 |
|
|
|
|
| 14 |
def analyze_sentiment(text):
|
| 15 |
+
result = sentiment_analyzer(text)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
label = result["label"]
|
| 18 |
+
score = result["score"]
|
| 19 |
+
|
| 20 |
+
# نحسب الاحتمالات بشكل يدوي لو الموديل فيه فئتين فقط
|
| 21 |
+
if label.upper() == "HAPPY":
|
| 22 |
+
positive = round(score, 3)
|
| 23 |
+
negative = round(1 - score, 3)
|
| 24 |
+
else:
|
| 25 |
+
negative = round(score, 3)
|
| 26 |
+
positive = round(1 - score, 3)
|
| 27 |
+
|
| 28 |
+
neutral = round(1 - (positive + negative), 3)
|
| 29 |
+
if neutral < 0:
|
| 30 |
+
neutral = 0.0 # علشان ميطلعش سالب بالخطأ
|
| 31 |
+
|
| 32 |
+
output = f"مثبت (إيجابي): {positive}\nمنفی (سلبي): {negative}\nخنثی (محايد): {neutral}"
|
| 33 |
return output
|
| 34 |
|
|
|
|
| 35 |
iface = gr.Interface(
|
| 36 |
fn=analyze_sentiment,
|
| 37 |
inputs=gr.Textbox(lines=2, placeholder="متن خود را وارد کنید..."),
|
| 38 |
outputs="text",
|
| 39 |
+
title="تحلیل احساسات فارسی",
|
| 40 |
+
description="تحلیل متن به فارسی و نمایش احتمال مثبت، منفی و خنثی."
|
| 41 |
)
|
| 42 |
|
| 43 |
iface.launch()
|