Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- .gitattributes +2 -0
- face_grab.py +67 -0
- gradcam.py +138 -0
- mmod_human_face_detector.dat +0 -0
- requirements.txt +9 -0
- shape_predictor_68_face_landmarks.dat +3 -0
- shape_predictor_68_face_landmarks_GTX.dat +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
shape_predictor_68_face_landmarks_GTX.dat filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
shape_predictor_68_face_landmarks.dat filter=lfs diff=lfs merge=lfs -text
|
face_grab.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import cv2 as cv
|
| 3 |
+
import numpy as np
|
| 4 |
+
import dlib
|
| 5 |
+
from typing import Optional
|
| 6 |
+
|
| 7 |
+
logging.basicConfig(level=logging.INFO)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class FaceGrabber:
|
| 11 |
+
def __init__(self):
|
| 12 |
+
self.cascades = [
|
| 13 |
+
"haarcascade_frontalface_default.xml",
|
| 14 |
+
"haarcascade_frontalface_alt.xml",
|
| 15 |
+
"haarcascade_frontalface_alt2.xml",
|
| 16 |
+
"haarcascade_frontalface_alt_tree.xml"
|
| 17 |
+
]
|
| 18 |
+
self.detector = dlib.get_frontal_face_detector() # load face detector
|
| 19 |
+
self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks_GTX.dat") # load face predictor
|
| 20 |
+
self.mmod = dlib.cnn_face_detection_model_v1("mmod_human_face_detector.dat") # load face detector
|
| 21 |
+
self.paddingBy = 0.1 # padding by 10%
|
| 22 |
+
|
| 23 |
+
def grab_faces(self, img: np.ndarray, bGray: bool = False) -> Optional[np.ndarray]:
|
| 24 |
+
|
| 25 |
+
if bGray:
|
| 26 |
+
img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # convert to grayscale
|
| 27 |
+
|
| 28 |
+
detected = None
|
| 29 |
+
|
| 30 |
+
if detected is None:
|
| 31 |
+
faces = self.detector(img) # detect faces
|
| 32 |
+
if len(faces) > 0:
|
| 33 |
+
detected = faces[0]
|
| 34 |
+
detected = (detected.left(), detected.top(), detected.width(), detected.height())
|
| 35 |
+
logging.info("Face detected by dlib")
|
| 36 |
+
|
| 37 |
+
if detected is None:
|
| 38 |
+
faces = self.mmod(img)
|
| 39 |
+
if len(faces) > 0:
|
| 40 |
+
detected = faces[0]
|
| 41 |
+
detected = (detected.rect.left(), detected.rect.top(), detected.rect.width(), detected.rect.height())
|
| 42 |
+
logging.info("Face detected by mmod")
|
| 43 |
+
|
| 44 |
+
if detected is None:
|
| 45 |
+
for cascade in self.cascades:
|
| 46 |
+
cascadeClassifier = cv.CascadeClassifier(cv.data.haarcascades + cascade)
|
| 47 |
+
faces = cascadeClassifier.detectMultiScale(img, scaleFactor=1.5, minNeighbors=5) # detect faces
|
| 48 |
+
if len(faces) > 0:
|
| 49 |
+
detected = faces[0]
|
| 50 |
+
logging.info(f"Face detected by {cascade}")
|
| 51 |
+
break
|
| 52 |
+
|
| 53 |
+
if detected is not None: # if face detected
|
| 54 |
+
x, y, w, h = detected # grab first face
|
| 55 |
+
padW = int(self.paddingBy * w) # get padding width
|
| 56 |
+
padH = int(self.paddingBy * h) # get padding height
|
| 57 |
+
imgH, imgW, _ = img.shape # get image dims
|
| 58 |
+
x = max(0, x - padW)
|
| 59 |
+
y = max(0, y - padH)
|
| 60 |
+
w = min(imgW - x, w + 2 * padW)
|
| 61 |
+
h = min(imgH - y, h + 2 * padH)
|
| 62 |
+
x = max(0, x - (w - detected[2]) // 2) # center the face horizontally
|
| 63 |
+
y = max(0, y - (h - detected[3]) // 2) # center the face vertically
|
| 64 |
+
face = img[y:y+h, x:x+w] # crop face
|
| 65 |
+
return face
|
| 66 |
+
|
| 67 |
+
return None
|
gradcam.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import ViTFeatureExtractor, ViTForImageClassification
|
| 2 |
+
import warnings
|
| 3 |
+
from torchvision import transforms
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
from pytorch_grad_cam import run_dff_on_image, GradCAM
|
| 6 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
| 7 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import numpy as np
|
| 10 |
+
import cv2 as cv
|
| 11 |
+
import torch
|
| 12 |
+
from typing import List, Callable, Optional
|
| 13 |
+
import logging
|
| 14 |
+
from face_grab import FaceGrabber
|
| 15 |
+
|
| 16 |
+
# original borrowed from https://github.com/jacobgil/pytorch-grad-cam/blob/master/tutorials/HuggingFace.ipynb
|
| 17 |
+
# thanks @jacobgil
|
| 18 |
+
# further mods beyond this commit by @simonSlamka
|
| 19 |
+
|
| 20 |
+
warnings.filterwarnings("ignore")
|
| 21 |
+
|
| 22 |
+
logging.basicConfig(level=logging.INFO)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class HuggingfaceToTensorModelWrapper(torch.nn.Module):
|
| 27 |
+
def __init__(self, model):
|
| 28 |
+
super(HuggingfaceToTensorModelWrapper, self).__init__()
|
| 29 |
+
self.model = model
|
| 30 |
+
|
| 31 |
+
def forward(self, x):
|
| 32 |
+
return self.model(x).logits
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class GradCam():
|
| 37 |
+
def __init__(self):
|
| 38 |
+
pass
|
| 39 |
+
|
| 40 |
+
def category_name_to_index(self, model, category_name):
|
| 41 |
+
name_to_index = dict((v, k) for k, v in model.config.id2label.items())
|
| 42 |
+
return name_to_index[category_name]
|
| 43 |
+
|
| 44 |
+
def run_grad_cam_on_image(self, model: torch.nn.Module,
|
| 45 |
+
target_layer: torch.nn.Module,
|
| 46 |
+
targets_for_gradcam: List[Callable],
|
| 47 |
+
reshape_transform: Optional[Callable],
|
| 48 |
+
input_tensor: torch.nn.Module,
|
| 49 |
+
input_image: Image,
|
| 50 |
+
method: Callable=GradCAM,
|
| 51 |
+
threshold: float=0.5):
|
| 52 |
+
with method(model=HuggingfaceToTensorModelWrapper(model),
|
| 53 |
+
target_layers=[target_layer],
|
| 54 |
+
reshape_transform=reshape_transform) as cam:
|
| 55 |
+
|
| 56 |
+
# Replicate the tensor for each of the categories we want to create Grad-CAM for:
|
| 57 |
+
repeated_tensor = input_tensor[None, :].repeat(len(targets_for_gradcam), 1, 1, 1)
|
| 58 |
+
|
| 59 |
+
batch_results = cam(input_tensor=repeated_tensor,
|
| 60 |
+
targets=targets_for_gradcam)
|
| 61 |
+
results = []
|
| 62 |
+
for grayscale_cam in batch_results:
|
| 63 |
+
grayscale_cam[grayscale_cam < threshold] = 0
|
| 64 |
+
visualization = show_cam_on_image(np.float32(input_image)/255,
|
| 65 |
+
grayscale_cam,
|
| 66 |
+
use_rgb=True)
|
| 67 |
+
# Make it weight less in the notebook:
|
| 68 |
+
visualization = cv.resize(visualization,
|
| 69 |
+
(visualization.shape[1]//2, visualization.shape[0]//2))
|
| 70 |
+
results.append(visualization)
|
| 71 |
+
return np.hstack(results)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def get_top_category(self, model, img_tensor, top_k=5):
|
| 75 |
+
logits = model(img_tensor.unsqueeze(0)).logits
|
| 76 |
+
probabilities = torch.nn.functional.softmax(logits, dim=1)
|
| 77 |
+
topIdx = logits.cpu()[0, :].detach().numpy().argsort()[-1]
|
| 78 |
+
topClass = model.config.id2label[topIdx]
|
| 79 |
+
topScore = probabilities[0][topIdx].item()
|
| 80 |
+
return [{"label": topClass, "score": topScore}]
|
| 81 |
+
|
| 82 |
+
def reshape_transform_vit_huggingface(self, x):
|
| 83 |
+
activations = x[:, 1:, :]
|
| 84 |
+
activations = activations.view(activations.shape[0],
|
| 85 |
+
14, 14, activations.shape[2])
|
| 86 |
+
activations = activations.transpose(2, 3).transpose(1, 2)
|
| 87 |
+
return activations
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
if __name__ == "__main__":
|
| 92 |
+
|
| 93 |
+
faceGrabber = FaceGrabber()
|
| 94 |
+
gradCam = GradCam()
|
| 95 |
+
|
| 96 |
+
image = Image.open("Feature-Image-74.jpg").convert("RGB")
|
| 97 |
+
face = faceGrabber.grab_faces(np.array(image))
|
| 98 |
+
if face is not None:
|
| 99 |
+
image = Image.fromarray(face)
|
| 100 |
+
|
| 101 |
+
img_tensor = transforms.ToTensor()(image)
|
| 102 |
+
|
| 103 |
+
model = ViTForImageClassification.from_pretrained("ongkn/attraction-classifier")
|
| 104 |
+
targets_for_gradcam = [ClassifierOutputTarget(gradCam.category_name_to_index(model, "pos")),
|
| 105 |
+
ClassifierOutputTarget(gradCam.category_name_to_index(model, "neg"))]
|
| 106 |
+
target_layer_dff = model.vit.layernorm
|
| 107 |
+
target_layer_gradcam = model.vit.encoder.layer[-2].output
|
| 108 |
+
image_resized = image.resize((224, 224))
|
| 109 |
+
tensor_resized = transforms.ToTensor()(image_resized)
|
| 110 |
+
|
| 111 |
+
dff_image = run_dff_on_image(model=model,
|
| 112 |
+
target_layer=target_layer_dff,
|
| 113 |
+
classifier=model.classifier,
|
| 114 |
+
img_pil=image_resized,
|
| 115 |
+
img_tensor=tensor_resized,
|
| 116 |
+
reshape_transform=gradCam.reshape_transform_vit_huggingface,
|
| 117 |
+
n_components=5,
|
| 118 |
+
top_k=10,
|
| 119 |
+
threshold=0,
|
| 120 |
+
output_size=None) #(500, 500))
|
| 121 |
+
cv.namedWindow("DFF Image", cv.WINDOW_KEEPRATIO)
|
| 122 |
+
cv.imshow("DFF Image", cv.cvtColor(dff_image, cv.COLOR_BGR2RGB))
|
| 123 |
+
cv.resizeWindow("DFF Image", 2500, 700)
|
| 124 |
+
# cv.waitKey(0)
|
| 125 |
+
# cv.destroyAllWindows()
|
| 126 |
+
grad_cam_image = gradCam.run_grad_cam_on_image(model=model,
|
| 127 |
+
target_layer=target_layer_gradcam,
|
| 128 |
+
targets_for_gradcam=targets_for_gradcam,
|
| 129 |
+
input_tensor=tensor_resized,
|
| 130 |
+
input_image=image_resized,
|
| 131 |
+
reshape_transform=gradCam.reshape_transform_vit_huggingface,
|
| 132 |
+
threshold=0)
|
| 133 |
+
cv.namedWindow("Grad-CAM Image", cv.WINDOW_KEEPRATIO)
|
| 134 |
+
cv.imshow("Grad-CAM Image", grad_cam_image)
|
| 135 |
+
cv.resizeWindow("Grad-CAM Image", 2000, 1250)
|
| 136 |
+
cv.waitKey(0)
|
| 137 |
+
cv.destroyAllWindows()
|
| 138 |
+
gradCam.print_top_categories(model, tensor_resized)
|
mmod_human_face_detector.dat
ADDED
|
Binary file (730 kB). View file
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
transformers
|
| 3 |
+
numpy
|
| 4 |
+
Pillow
|
| 5 |
+
opencv-python-headless
|
| 6 |
+
dlib
|
| 7 |
+
torch
|
| 8 |
+
grad-cam
|
| 9 |
+
torchvision
|
shape_predictor_68_face_landmarks.dat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fbdc2cb80eb9aa7a758672cbfdda32ba6300efe9b6e6c7a299ff7e736b11b92f
|
| 3 |
+
size 99693937
|
shape_predictor_68_face_landmarks_GTX.dat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:249a69a1d5f2d7c714a92934d35367d46eb52dc308d46717e82d49e8386b3b80
|
| 3 |
+
size 66435981
|