Improve the generated Readme with the original model datacard and usage reference from transformers.js docs
Browse files- app.py +138 -13
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -3,12 +3,14 @@ import os
|
|
| 3 |
import subprocess
|
| 4 |
import sys
|
| 5 |
import shutil
|
|
|
|
| 6 |
from pathlib import Path
|
| 7 |
from typing import List, Optional, Tuple
|
| 8 |
from dataclasses import dataclass
|
| 9 |
|
| 10 |
import streamlit as st
|
| 11 |
-
from huggingface_hub import HfApi, whoami
|
|
|
|
| 12 |
|
| 13 |
logging.basicConfig(level=logging.INFO)
|
| 14 |
logger = logging.getLogger(__name__)
|
|
@@ -58,6 +60,86 @@ class ModelConverter:
|
|
| 58 |
self.config = config
|
| 59 |
self.api = HfApi(token=config.hf_token)
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
def setup_repository(self) -> None:
|
| 62 |
"""Ensure the bundled transformers.js repository is present."""
|
| 63 |
if not self.config.repo_path.exists():
|
|
@@ -112,6 +194,14 @@ class ModelConverter:
|
|
| 112 |
if output_attentions:
|
| 113 |
extra_args.append("--output_attentions")
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
result = self._run_conversion_subprocess(
|
| 116 |
input_model_id, extra_args=extra_args or None
|
| 117 |
)
|
|
@@ -133,9 +223,8 @@ class ModelConverter:
|
|
| 133 |
|
| 134 |
readme_path = f"{model_folder_path}/README.md"
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
file.write(self.generate_readme(input_model_id))
|
| 139 |
|
| 140 |
self.api.upload_folder(
|
| 141 |
folder_path=str(model_folder_path), repo_id=output_model_id
|
|
@@ -147,18 +236,54 @@ class ModelConverter:
|
|
| 147 |
shutil.rmtree(model_folder_path, ignore_errors=True)
|
| 148 |
|
| 149 |
def generate_readme(self, imi: str):
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
"
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
f"This is an ONNX version of [{imi}](https://huggingface.co/{imi}). "
|
| 158 |
"It was automatically converted and uploaded using "
|
| 159 |
-
"[this
|
| 160 |
)
|
| 161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
def main():
|
| 164 |
"""Main application entry point."""
|
|
@@ -195,7 +320,7 @@ def main():
|
|
| 195 |
|
| 196 |
if config.hf_username == input_model_id.split("/")[0]:
|
| 197 |
same_repo = st.checkbox(
|
| 198 |
-
"
|
| 199 |
)
|
| 200 |
else:
|
| 201 |
same_repo = False
|
|
|
|
| 3 |
import subprocess
|
| 4 |
import sys
|
| 5 |
import shutil
|
| 6 |
+
import re
|
| 7 |
from pathlib import Path
|
| 8 |
from typing import List, Optional, Tuple
|
| 9 |
from dataclasses import dataclass
|
| 10 |
|
| 11 |
import streamlit as st
|
| 12 |
+
from huggingface_hub import HfApi, whoami, model_info, hf_hub_download
|
| 13 |
+
import yaml
|
| 14 |
|
| 15 |
logging.basicConfig(level=logging.INFO)
|
| 16 |
logger = logging.getLogger(__name__)
|
|
|
|
| 60 |
self.config = config
|
| 61 |
self.api = HfApi(token=config.hf_token)
|
| 62 |
|
| 63 |
+
def _fetch_original_readme(self, repo_id: str) -> str:
|
| 64 |
+
try:
|
| 65 |
+
path = hf_hub_download(
|
| 66 |
+
repo_id=repo_id, filename="README.md", token=self.config.hf_token
|
| 67 |
+
)
|
| 68 |
+
with open(path, "r", encoding="utf-8", errors="ignore") as f:
|
| 69 |
+
return f.read()
|
| 70 |
+
except Exception:
|
| 71 |
+
return ""
|
| 72 |
+
|
| 73 |
+
def _strip_yaml_frontmatter(self, text: str) -> str:
|
| 74 |
+
if not text:
|
| 75 |
+
return ""
|
| 76 |
+
if text.startswith("---"):
|
| 77 |
+
m = re.match(r"^---[\s\S]*?\n---\s*\n", text)
|
| 78 |
+
if m:
|
| 79 |
+
return text[m.end() :]
|
| 80 |
+
return text
|
| 81 |
+
|
| 82 |
+
def _extract_yaml_frontmatter(self, text: str) -> Tuple[dict, str]:
|
| 83 |
+
"""Return (frontmatter_dict, body). If no frontmatter, returns ({}, text)."""
|
| 84 |
+
if not text or not text.startswith("---"):
|
| 85 |
+
return {}, text or ""
|
| 86 |
+
m = re.match(r"^---\s*\n([\s\S]*?)\n---\s*\n", text)
|
| 87 |
+
if not m:
|
| 88 |
+
return {}, text
|
| 89 |
+
fm_text = m.group(1)
|
| 90 |
+
body = text[m.end() :]
|
| 91 |
+
try:
|
| 92 |
+
data = yaml.safe_load(fm_text)
|
| 93 |
+
if not isinstance(data, dict):
|
| 94 |
+
data = {}
|
| 95 |
+
except Exception:
|
| 96 |
+
data = {}
|
| 97 |
+
return data, body
|
| 98 |
+
|
| 99 |
+
def _pipeline_docs_url(self, pipeline_tag: Optional[str]) -> Optional[str]:
|
| 100 |
+
base = "https://huggingface.co/docs/transformers.js/api/pipelines"
|
| 101 |
+
if not pipeline_tag:
|
| 102 |
+
return base
|
| 103 |
+
mapping = {
|
| 104 |
+
"text-classification": "TextClassificationPipeline",
|
| 105 |
+
"token-classification": "TokenClassificationPipeline",
|
| 106 |
+
"question-answering": "QuestionAnsweringPipeline",
|
| 107 |
+
"fill-mask": "FillMaskPipeline",
|
| 108 |
+
"text2text-generation": "Text2TextGenerationPipeline",
|
| 109 |
+
"summarization": "SummarizationPipeline",
|
| 110 |
+
"translation": "TranslationPipeline",
|
| 111 |
+
"text-generation": "TextGenerationPipeline",
|
| 112 |
+
"zero-shot-classification": "ZeroShotClassificationPipeline",
|
| 113 |
+
"feature-extraction": "FeatureExtractionPipeline",
|
| 114 |
+
"image-feature-extraction": "ImageFeatureExtractionPipeline",
|
| 115 |
+
"audio-classification": "AudioClassificationPipeline",
|
| 116 |
+
"zero-shot-audio-classification": "ZeroShotAudioClassificationPipeline",
|
| 117 |
+
"automatic-speech-recognition": "AutomaticSpeechRecognitionPipeline",
|
| 118 |
+
"image-to-text": "ImageToTextPipeline",
|
| 119 |
+
"image-classification": "ImageClassificationPipeline",
|
| 120 |
+
"image-segmentation": "ImageSegmentationPipeline",
|
| 121 |
+
"background-removal": "BackgroundRemovalPipeline",
|
| 122 |
+
"zero-shot-image-classification": "ZeroShotImageClassificationPipeline",
|
| 123 |
+
"object-detection": "ObjectDetectionPipeline",
|
| 124 |
+
"zero-shot-object-detection": "ZeroShotObjectDetectionPipeline",
|
| 125 |
+
"document-question-answering": "DocumentQuestionAnsweringPipeline",
|
| 126 |
+
"text-to-audio": "TextToAudioPipeline",
|
| 127 |
+
"image-to-image": "ImageToImagePipeline",
|
| 128 |
+
"depth-estimation": "DepthEstimationPipeline",
|
| 129 |
+
}
|
| 130 |
+
cls = mapping.get(pipeline_tag)
|
| 131 |
+
if not cls:
|
| 132 |
+
return base
|
| 133 |
+
return f"{base}#module_pipelines.{cls}"
|
| 134 |
+
|
| 135 |
+
def _map_pipeline_to_task(self, pipeline_tag: Optional[str]) -> Optional[str]:
|
| 136 |
+
if not pipeline_tag:
|
| 137 |
+
return None
|
| 138 |
+
synonyms = {
|
| 139 |
+
"vqa": "visual-question-answering",
|
| 140 |
+
}
|
| 141 |
+
return synonyms.get(pipeline_tag, pipeline_tag)
|
| 142 |
+
|
| 143 |
def setup_repository(self) -> None:
|
| 144 |
"""Ensure the bundled transformers.js repository is present."""
|
| 145 |
if not self.config.repo_path.exists():
|
|
|
|
| 194 |
if output_attentions:
|
| 195 |
extra_args.append("--output_attentions")
|
| 196 |
|
| 197 |
+
try:
|
| 198 |
+
info = model_info(repo_id=input_model_id, token=self.config.hf_token)
|
| 199 |
+
task = self._map_pipeline_to_task(getattr(info, "pipeline_tag", None))
|
| 200 |
+
if task:
|
| 201 |
+
extra_args.extend(["--task", task])
|
| 202 |
+
except Exception:
|
| 203 |
+
pass
|
| 204 |
+
|
| 205 |
result = self._run_conversion_subprocess(
|
| 206 |
input_model_id, extra_args=extra_args or None
|
| 207 |
)
|
|
|
|
| 223 |
|
| 224 |
readme_path = f"{model_folder_path}/README.md"
|
| 225 |
|
| 226 |
+
with open(readme_path, "w") as file:
|
| 227 |
+
file.write(self.generate_readme(input_model_id))
|
|
|
|
| 228 |
|
| 229 |
self.api.upload_folder(
|
| 230 |
folder_path=str(model_folder_path), repo_id=output_model_id
|
|
|
|
| 236 |
shutil.rmtree(model_folder_path, ignore_errors=True)
|
| 237 |
|
| 238 |
def generate_readme(self, imi: str):
|
| 239 |
+
try:
|
| 240 |
+
info = model_info(repo_id=imi, token=self.config.hf_token)
|
| 241 |
+
pipeline_tag = getattr(info, "pipeline_tag", None)
|
| 242 |
+
except Exception:
|
| 243 |
+
pipeline_tag = None
|
| 244 |
+
|
| 245 |
+
original_text = self._fetch_original_readme(imi)
|
| 246 |
+
original_meta, original_body = self._extract_yaml_frontmatter(original_text)
|
| 247 |
+
original_body = (
|
| 248 |
+
original_body or self._strip_yaml_frontmatter(original_text)
|
| 249 |
+
).strip()
|
| 250 |
+
|
| 251 |
+
merged_meta = {}
|
| 252 |
+
if isinstance(original_meta, dict):
|
| 253 |
+
merged_meta.update(original_meta)
|
| 254 |
+
merged_meta["library_name"] = "transformers.js"
|
| 255 |
+
merged_meta["base_model"] = [imi]
|
| 256 |
+
if pipeline_tag is not None:
|
| 257 |
+
merged_meta["pipeline_tag"] = pipeline_tag
|
| 258 |
+
|
| 259 |
+
fm_yaml = yaml.safe_dump(merged_meta, sort_keys=False).strip()
|
| 260 |
+
header = f"---\n{fm_yaml}\n---\n\n"
|
| 261 |
+
|
| 262 |
+
parts: List[str] = []
|
| 263 |
+
parts.append(header)
|
| 264 |
+
parts.append(f"# {imi.split('/')[-1]} (ONNX)\n")
|
| 265 |
+
parts.append(
|
| 266 |
f"This is an ONNX version of [{imi}](https://huggingface.co/{imi}). "
|
| 267 |
"It was automatically converted and uploaded using "
|
| 268 |
+
"[this Hugging Face Space](https://huggingface.co/spaces/onnx-community/convert-to-onnx)."
|
| 269 |
)
|
| 270 |
|
| 271 |
+
docs_url = self._pipeline_docs_url(pipeline_tag)
|
| 272 |
+
if docs_url:
|
| 273 |
+
parts.append("\n## Usage with Transformers.js\n")
|
| 274 |
+
if pipeline_tag:
|
| 275 |
+
parts.append(
|
| 276 |
+
f"See the pipeline documentation for `{pipeline_tag}`: {docs_url}"
|
| 277 |
+
)
|
| 278 |
+
else:
|
| 279 |
+
parts.append(f"See the pipelines documentation: {docs_url}")
|
| 280 |
+
|
| 281 |
+
if original_body:
|
| 282 |
+
parts.append("\n---\n")
|
| 283 |
+
parts.append(original_body)
|
| 284 |
+
|
| 285 |
+
return "\n\n".join(parts) + "\n"
|
| 286 |
+
|
| 287 |
|
| 288 |
def main():
|
| 289 |
"""Main application entry point."""
|
|
|
|
| 320 |
|
| 321 |
if config.hf_username == input_model_id.split("/")[0]:
|
| 322 |
same_repo = st.checkbox(
|
| 323 |
+
"Upload the ONNX weights to the existing repository"
|
| 324 |
)
|
| 325 |
else:
|
| 326 |
same_repo = False
|
requirements.txt
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
huggingface_hub==0.35.3
|
| 2 |
streamlit==1.50.0
|
|
|
|
| 3 |
onnxscript==0.5.4
|
| 4 |
onnxconverter_common==1.16.0
|
| 5 |
onnx_graphsurgeon==0.5.8
|
|
|
|
| 1 |
huggingface_hub==0.35.3
|
| 2 |
streamlit==1.50.0
|
| 3 |
+
PyYAML==6.0.2
|
| 4 |
onnxscript==0.5.4
|
| 5 |
onnxconverter_common==1.16.0
|
| 6 |
onnx_graphsurgeon==0.5.8
|