Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Create app.py
Browse files
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,247 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
            from langchain.document_loaders import ArxivLoader
         | 
| 3 | 
            +
            from PyPDF2 import PdfReader
         | 
| 4 | 
            +
            from langchain_community.llms import HuggingFaceHub
         | 
| 5 | 
            +
            from langchain.text_splitter import TokenTextSplitter
         | 
| 6 | 
            +
            from langchain.chains.summarize import load_summarize_chain
         | 
| 7 | 
            +
            from langchain.document_loaders import PyPDFLoader
         | 
| 8 | 
            +
            from transformers import pipeline
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            from dotenv import load_dotenv
         | 
| 11 | 
            +
            import os
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            load_dotenv()
         | 
| 14 | 
            +
            hugging_api_key = os.getenv('HUGGING_API_KEY')
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            from groq import AsyncGroq
         | 
| 17 | 
            +
            from groq import Groq
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            from langchain_groq import ChatGroq
         | 
| 20 | 
            +
            from langchain.document_loaders import ArxivLoader
         | 
| 21 | 
            +
            from langchain.vectorstores import Chroma
         | 
| 22 | 
            +
            from langchain.chains import RetrievalQA
         | 
| 23 | 
            +
            from langchain.embeddings.huggingface_hub import HuggingFaceHubEmbeddings
         | 
| 24 | 
            +
            from huggingface_hub import login
         | 
| 25 | 
            +
            login(hugging_api_key)
         | 
| 26 | 
            +
            embedding_model = HuggingFaceHubEmbeddings(huggingfacehub_api_token=hugging_api_key)
         | 
| 27 | 
            +
            llm = ChatGroq(temperature=0, model_name="llama3-70b-8192", api_key = "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")
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            def display_results(result):
         | 
| 30 | 
            +
                return "\n".join(result)  # Join each entry with double newlines for better readability
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            def summarize_pdf(pdf_file_path, max_length):
         | 
| 33 | 
            +
                # summarizer = pipeline('summarization', model='allenai/led-large-16384-arxiv', min_length=100, max_length=max_length, device=0)
         | 
| 34 | 
            +
                loader = PdfReader(pdf_file_path)
         | 
| 35 | 
            +
                text = """ """
         | 
| 36 | 
            +
                for page in loader.pages:
         | 
| 37 | 
            +
                    text += page.extract_text()
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                text_splitter = TokenTextSplitter(chunk_size=8192, chunk_overlap=1000)
         | 
| 40 | 
            +
                chunks = text_splitter.split_text(text)
         | 
| 41 | 
            +
                summary = ""
         | 
| 42 | 
            +
                for i in range(len(chunks)):
         | 
| 43 | 
            +
                    # text = chunks[i].page_content
         | 
| 44 | 
            +
                    text = chunks[i]
         | 
| 45 | 
            +
                    summary += summarize_text(text)
         | 
| 46 | 
            +
                # summary = str(max_length)
         | 
| 47 | 
            +
                return summary
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            def summarize_text(text):
         | 
| 50 | 
            +
                sum_client = Groq(api_key="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")
         | 
| 51 | 
            +
                messages = []
         | 
| 52 | 
            +
                # messages.append({"role": "system", "content": "You are arxiv paper summarizer. If I give you the doi number, you should only output summarization. Summarization should be more than 10% words of the paper. For example, in the paper there are 500 words, than summarization should be more than 50 words."})
         | 
| 53 | 
            +
                messages.append({"role": "system", "content": "You are summarizer. If I give you the whole text you should summarize it.  And you don't need the title and author"})
         | 
| 54 | 
            +
                messages = messages + [
         | 
| 55 | 
            +
                    {
         | 
| 56 | 
            +
                        "role": "user",
         | 
| 57 | 
            +
                        "content": f"Summarize the paper. The whole text is {text}",
         | 
| 58 | 
            +
                    },
         | 
| 59 | 
            +
                ]
         | 
| 60 | 
            +
                response = sum_client.chat.completions.create(
         | 
| 61 | 
            +
                    messages=messages,
         | 
| 62 | 
            +
                    model="llama3-70b-8192",
         | 
| 63 | 
            +
                    temperature=0,
         | 
| 64 | 
            +
                    max_tokens=8192,
         | 
| 65 | 
            +
                    top_p=1,
         | 
| 66 | 
            +
                    stop=None
         | 
| 67 | 
            +
                )
         | 
| 68 | 
            +
                text_summary = response.choices[0].message.content
         | 
| 69 | 
            +
                return text_summary
         | 
| 70 | 
            +
             | 
| 71 | 
            +
             | 
| 72 | 
            +
             | 
| 73 | 
            +
             | 
| 74 | 
            +
            def remove_first_sentence_and_title(text):
         | 
| 75 | 
            +
                # Remove the first sentence
         | 
| 76 | 
            +
                first_sentence_end = text.find('. ') + 2  # Find the end of the first sentence
         | 
| 77 | 
            +
                text_without_first_sentence = text[first_sentence_end:]
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                # Remove the title
         | 
| 80 | 
            +
                title_start = text_without_first_sentence.find('**Title:**')
         | 
| 81 | 
            +
                if title_start != -1:
         | 
| 82 | 
            +
                    title_end = text_without_first_sentence.find('\n', title_start)
         | 
| 83 | 
            +
                    if title_end != -1:
         | 
| 84 | 
            +
                        text_without_title = text_without_first_sentence[:title_start] + text_without_first_sentence[title_end+1:]
         | 
| 85 | 
            +
                    else:
         | 
| 86 | 
            +
                        text_without_title = text_without_first_sentence[:title_start]
         | 
| 87 | 
            +
                else:
         | 
| 88 | 
            +
                    text_without_title = text_without_first_sentence
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                return text_without_title.strip()
         | 
| 91 | 
            +
             | 
| 92 | 
            +
             | 
| 93 | 
            +
             | 
| 94 | 
            +
            def summarize_arxiv_pdf(query):
         | 
| 95 | 
            +
                loader = ArxivLoader(query=query, load_max_docs=10)
         | 
| 96 | 
            +
                documents = loader.load()
         | 
| 97 | 
            +
                text_splitter = TokenTextSplitter(chunk_size=5700, chunk_overlap=100)
         | 
| 98 | 
            +
                chunks = text_splitter.split_documents(documents)
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                text = documents[0].page_content
         | 
| 101 | 
            +
             | 
| 102 | 
            +
             | 
| 103 | 
            +
                ref_summary = ""
         | 
| 104 | 
            +
                for i in range(len(chunks)):
         | 
| 105 | 
            +
                    text = chunks[i].page_content
         | 
| 106 | 
            +
                    ref_summary += summarize_text(text)
         | 
| 107 | 
            +
                # ref_summary = ref_summary.split('paper:')[1]
         | 
| 108 | 
            +
                # ref_summary = remove_first_sentence_and_title(ref_summary)
         | 
| 109 | 
            +
                ref_summary = ref_summary.replace("Here is a summary of the paper:", "").strip()
         | 
| 110 | 
            +
                arxiv_summary = loader.get_summaries_as_docs()
         | 
| 111 | 
            +
                
         | 
| 112 | 
            +
                summaries = []
         | 
| 113 | 
            +
                for doc in arxiv_summary:
         | 
| 114 | 
            +
                    title = doc.metadata.get("Title")
         | 
| 115 | 
            +
                    authors = doc.metadata.get("Authors")
         | 
| 116 | 
            +
                    url = doc.metadata.get("Entry ID")
         | 
| 117 | 
            +
                    summary = doc.page_content
         | 
| 118 | 
            +
                    summaries.append(f"**{title}**\n")
         | 
| 119 | 
            +
                    summaries.append(f"**Authors:** {authors}\n")
         | 
| 120 | 
            +
                    summaries.append(f"**View full paper:** [Link to paper]({url})\n")
         | 
| 121 | 
            +
                    summaries.append(f"**Summary:** {summary}\n")
         | 
| 122 | 
            +
                    summaries.append(f"**Lazyman Summary:**\n ")
         | 
| 123 | 
            +
                    summaries.append(f"{ref_summary}")
         | 
| 124 | 
            +
                summaries = display_results(summaries)
         | 
| 125 | 
            +
                print(summaries)
         | 
| 126 | 
            +
                return summaries
         | 
| 127 | 
            +
             | 
| 128 | 
            +
             | 
| 129 | 
            +
            client = AsyncGroq(api_key="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")
         | 
| 130 | 
            +
             | 
| 131 | 
            +
            async def chat_with_replit(message, history):
         | 
| 132 | 
            +
                messages = []
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                for chat in history:
         | 
| 135 | 
            +
                    user = str(chat[0])
         | 
| 136 | 
            +
                    assistant = str(chat[1])
         | 
| 137 | 
            +
                
         | 
| 138 | 
            +
                    messages.append({"role": "system", "content": "You are assistor. I will ask you some questions than you should answer!"})
         | 
| 139 | 
            +
                    messages.append({"role": 'user', "content": user})
         | 
| 140 | 
            +
                    messages.append({"role": 'assistant', "content": assistant})
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                messages = messages + [
         | 
| 143 | 
            +
                    {
         | 
| 144 | 
            +
                        "role": "user",
         | 
| 145 | 
            +
                        "content": str(message),
         | 
| 146 | 
            +
                    },
         | 
| 147 | 
            +
                ]
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                print(messages)
         | 
| 150 | 
            +
                
         | 
| 151 | 
            +
                response_content = ""
         | 
| 152 | 
            +
                stream = await client.chat.completions.create(
         | 
| 153 | 
            +
                    messages=messages,
         | 
| 154 | 
            +
                    model="llama3-70b-8192",
         | 
| 155 | 
            +
                    temperature=0,
         | 
| 156 | 
            +
                    max_tokens=1024,
         | 
| 157 | 
            +
                    top_p=1,
         | 
| 158 | 
            +
                    stop=None,
         | 
| 159 | 
            +
                    stream=True,
         | 
| 160 | 
            +
                )
         | 
| 161 | 
            +
                async for chunk in stream:
         | 
| 162 | 
            +
                    content = chunk.choices[0].delta.content
         | 
| 163 | 
            +
                    if content:
         | 
| 164 | 
            +
                        response_content += chunk.choices[0].delta.content
         | 
| 165 | 
            +
                    yield response_content
         | 
| 166 | 
            +
             | 
| 167 | 
            +
            js = """<script src="https://replit.com/public/js/replit-badge-v2.js" theme="dark" position="bottom-right"></script>"""
         | 
| 168 | 
            +
             | 
| 169 | 
            +
             | 
| 170 | 
            +
            async def chat_with_replit_pdf(message, history, doi_num):
         | 
| 171 | 
            +
                messages = []
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                old_doi = "old"
         | 
| 174 | 
            +
                if old_doi != doi_num:
         | 
| 175 | 
            +
                    loader = ArxivLoader(query=str(doi_num), load_max_docs=10)
         | 
| 176 | 
            +
                    documents = loader.load_and_split()
         | 
| 177 | 
            +
                    metadata = documents[0].metadata
         | 
| 178 | 
            +
                    vector_store = Chroma.from_documents(documents, embedding_model)
         | 
| 179 | 
            +
                    old_doi = doi_num
         | 
| 180 | 
            +
                def retrieve_relevant_content(user_query):
         | 
| 181 | 
            +
                    results = vector_store.similarity_search(user_query, k=3)
         | 
| 182 | 
            +
                    relevant_content = "\n\n".join([doc.page_content for doc in results])
         | 
| 183 | 
            +
                    return relevant_content
         | 
| 184 | 
            +
                relevant_content = retrieve_relevant_content(message)
         | 
| 185 | 
            +
             | 
| 186 | 
            +
             | 
| 187 | 
            +
                messages = messages + [
         | 
| 188 | 
            +
                    {
         | 
| 189 | 
            +
                        "role": "user",
         | 
| 190 | 
            +
                        "content": str(message),
         | 
| 191 | 
            +
                    },
         | 
| 192 | 
            +
                    {
         | 
| 193 | 
            +
                        "role": "system",
         | 
| 194 | 
            +
                        "content": f"You should answer about this arxiv paper for {doi_num}.\n" 
         | 
| 195 | 
            +
                        f"This is the metadata of the paper:{metadata}.\n"
         | 
| 196 | 
            +
                        f"This is relevant information of the paper:{relevant_content}.\n"
         | 
| 197 | 
            +
                    }
         | 
| 198 | 
            +
                ]
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                print(messages)
         | 
| 201 | 
            +
                
         | 
| 202 | 
            +
                response_content = ""
         | 
| 203 | 
            +
                stream = await client.chat.completions.create(
         | 
| 204 | 
            +
                    messages=messages,
         | 
| 205 | 
            +
                    model="llama3-70b-8192",
         | 
| 206 | 
            +
                    temperature=0,
         | 
| 207 | 
            +
                    max_tokens=1024,
         | 
| 208 | 
            +
                    top_p=1,
         | 
| 209 | 
            +
                    stop=None,
         | 
| 210 | 
            +
                    stream=False,
         | 
| 211 | 
            +
                )
         | 
| 212 | 
            +
                return stream.choices[0].message.content;
         | 
| 213 | 
            +
             | 
| 214 | 
            +
             | 
| 215 | 
            +
            with gr.Blocks() as app:
         | 
| 216 | 
            +
                with gr.Tab(label="Arxiv summarization"):
         | 
| 217 | 
            +
                    with gr.Column():
         | 
| 218 | 
            +
                        number = gr.Textbox(label="Enter your arxiv number")
         | 
| 219 | 
            +
                        sumarxiv_btn = gr.Button(value="summarize-arxiv")
         | 
| 220 | 
            +
                    with gr.Column():
         | 
| 221 | 
            +
                        outputs = gr.Markdown(label="Summary", height=1000)
         | 
| 222 | 
            +
                sumarxiv_btn.click(summarize_arxiv_pdf, inputs=number, outputs=outputs)    
         | 
| 223 | 
            +
                with gr.Tab(label="Local summarization"):
         | 
| 224 | 
            +
                    with gr.Row():
         | 
| 225 | 
            +
                        with gr.Column():
         | 
| 226 | 
            +
                            input_path = gr.File(label="Upload PDF file")
         | 
| 227 | 
            +
                        with gr.Column():
         | 
| 228 | 
            +
                            # set_temperature = gr.Slider(0, 1, value=0, step=0.1, label="temperature")
         | 
| 229 | 
            +
                            set_max_length = gr.Slider(512, 4096, value=2048, step=512, label="max length")
         | 
| 230 | 
            +
                            sumlocal_btn = gr.Button(value="summarize-local")
         | 
| 231 | 
            +
                    with gr.Row():
         | 
| 232 | 
            +
                        output_local = gr.Markdown(label="summary", height=1000)
         | 
| 233 | 
            +
                sumlocal_btn.click(summarize_pdf, inputs=[input_path, set_max_length], outputs=output_local)
         | 
| 234 | 
            +
                with gr.Tab(label="ChatBot"):
         | 
| 235 | 
            +
                    gr.ChatInterface(chat_with_replit,
         | 
| 236 | 
            +
                                   examples=[
         | 
| 237 | 
            +
                                       "Explain about the attention is all you need",
         | 
| 238 | 
            +
                                       "Who is the inventor of the GAN",
         | 
| 239 | 
            +
                                       "What is the main idea style transfer?"
         | 
| 240 | 
            +
                                   ])
         | 
| 241 | 
            +
                with gr.Tab(label="Chat with pdf"):
         | 
| 242 | 
            +
                    gr.ChatInterface(fn = chat_with_replit_pdf,
         | 
| 243 | 
            +
                                     additional_inputs = [
         | 
| 244 | 
            +
                                         gr.Textbox(label="doi", placeholder="Enter doi number")
         | 
| 245 | 
            +
                                     ],
         | 
| 246 | 
            +
                                    type="messages")
         | 
| 247 | 
            +
            app.launch()
         | 

