Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Clémentine
commited on
Commit
·
014d36a
1
Parent(s):
1de2d20
updated tooltips
Browse files
frontend/src/pages/LeaderboardPage/components/Leaderboard/constants/defaults.js
CHANGED
|
@@ -44,13 +44,13 @@ const FILTERS = {
|
|
| 44 |
hide: true,
|
| 45 |
},
|
| 46 |
{
|
| 47 |
-
value: "
|
| 48 |
-
label: "
|
| 49 |
hide: true,
|
| 50 |
},
|
| 51 |
{
|
| 52 |
-
value: "
|
| 53 |
-
label: "
|
| 54 |
hide: true,
|
| 55 |
},
|
| 56 |
{
|
|
|
|
| 44 |
hide: true,
|
| 45 |
},
|
| 46 |
{
|
| 47 |
+
value: "is_merged",
|
| 48 |
+
label: "Merged model",
|
| 49 |
hide: true,
|
| 50 |
},
|
| 51 |
{
|
| 52 |
+
value: "is_flagged",
|
| 53 |
+
label: "Potentially contaminated model",
|
| 54 |
hide: true,
|
| 55 |
},
|
| 56 |
{
|
frontend/src/pages/LeaderboardPage/components/Leaderboard/constants/quickFilters.js
CHANGED
|
@@ -11,8 +11,8 @@ export const QUICK_FILTER_PRESETS = [
|
|
| 11 |
},
|
| 12 |
{
|
| 13 |
id: 'small_models',
|
| 14 |
-
label: 'For
|
| 15 |
-
shortDescription: 'Smol-LMs:
|
| 16 |
description: 'Lightweight models optimized for consumer hardware with up to one GPU. Ideal for private consumer hardware.',
|
| 17 |
filters: {
|
| 18 |
paramsRange: [3, 7],
|
|
@@ -21,7 +21,7 @@ export const QUICK_FILTER_PRESETS = [
|
|
| 21 |
},
|
| 22 |
{
|
| 23 |
id: 'medium_models',
|
| 24 |
-
label: '
|
| 25 |
shortDescription: 'Medium-sized models: 7B-65B parameters',
|
| 26 |
description: 'Overall balance between performance and required resources.',
|
| 27 |
filters: {
|
|
@@ -33,7 +33,7 @@ export const QUICK_FILTER_PRESETS = [
|
|
| 33 |
id: 'large_models',
|
| 34 |
label: 'For the GPU-rich',
|
| 35 |
shortDescription: 'Large models: 65B+ parameters',
|
| 36 |
-
description: 'Large-scale models offering (in theory) the best performance but requiring significant resources.
|
| 37 |
filters: {
|
| 38 |
paramsRange: [65, 140],
|
| 39 |
selectedBooleanFilters: []
|
|
@@ -43,7 +43,7 @@ export const QUICK_FILTER_PRESETS = [
|
|
| 43 |
id: 'official_providers',
|
| 44 |
label: 'Only Official Providers',
|
| 45 |
shortDescription: 'Officially provided models',
|
| 46 |
-
description: 'Models that are officially provided and maintained by
|
| 47 |
filters: {
|
| 48 |
selectedBooleanFilters: ['is_highlighted_by_maintainer']
|
| 49 |
}
|
|
|
|
| 11 |
},
|
| 12 |
{
|
| 13 |
id: 'small_models',
|
| 14 |
+
label: 'For Consumers',
|
| 15 |
+
shortDescription: 'Smol-LMs: 3-7B parameters',
|
| 16 |
description: 'Lightweight models optimized for consumer hardware with up to one GPU. Ideal for private consumer hardware.',
|
| 17 |
filters: {
|
| 18 |
paramsRange: [3, 7],
|
|
|
|
| 21 |
},
|
| 22 |
{
|
| 23 |
id: 'medium_models',
|
| 24 |
+
label: 'Mid-range',
|
| 25 |
shortDescription: 'Medium-sized models: 7B-65B parameters',
|
| 26 |
description: 'Overall balance between performance and required resources.',
|
| 27 |
filters: {
|
|
|
|
| 33 |
id: 'large_models',
|
| 34 |
label: 'For the GPU-rich',
|
| 35 |
shortDescription: 'Large models: 65B+ parameters',
|
| 36 |
+
description: 'Large-scale models offering (in theory) the best performance but requiring significant resources. Require adapted infrastructure.',
|
| 37 |
filters: {
|
| 38 |
paramsRange: [65, 140],
|
| 39 |
selectedBooleanFilters: []
|
|
|
|
| 43 |
id: 'official_providers',
|
| 44 |
label: 'Only Official Providers',
|
| 45 |
shortDescription: 'Officially provided models',
|
| 46 |
+
description: 'Models that are officially provided and maintained by official creators or organizations.',
|
| 47 |
filters: {
|
| 48 |
selectedBooleanFilters: ['is_highlighted_by_maintainer']
|
| 49 |
}
|
frontend/src/pages/LeaderboardPage/components/Leaderboard/constants/tooltips.js
CHANGED
|
@@ -48,15 +48,15 @@ export const COLUMN_TOOLTIPS = {
|
|
| 48 |
subItems: ["Instruction following", "Formatting", "Generation"],
|
| 49 |
},
|
| 50 |
{
|
| 51 |
-
label: "Scoring",
|
| 52 |
-
description: "
|
| 53 |
},
|
| 54 |
]),
|
| 55 |
|
| 56 |
BBH: createTooltipContent("Big Bench Hard (BBH):", [
|
| 57 |
{
|
| 58 |
label: "Overview",
|
| 59 |
-
description: "Collection of challenging for LLM tasks across domains",
|
| 60 |
subItems: [
|
| 61 |
"Language understanding",
|
| 62 |
"Mathematical reasoning",
|
|
@@ -64,9 +64,9 @@ export const COLUMN_TOOLTIPS = {
|
|
| 64 |
],
|
| 65 |
},
|
| 66 |
{
|
| 67 |
-
label: "Scoring",
|
| 68 |
description:
|
| 69 |
-
"
|
| 70 |
},
|
| 71 |
]),
|
| 72 |
|
|
@@ -79,9 +79,9 @@ export const COLUMN_TOOLTIPS = {
|
|
| 79 |
subItems: ["Complex algebra", "Geometry problems", "Advanced calculus"],
|
| 80 |
},
|
| 81 |
{
|
| 82 |
-
label: "
|
| 83 |
description:
|
| 84 |
-
"
|
| 85 |
},
|
| 86 |
]
|
| 87 |
),
|
|
@@ -91,15 +91,15 @@ export const COLUMN_TOOLTIPS = {
|
|
| 91 |
label: "Focus",
|
| 92 |
description: "PhD-level knowledge multiple choice questions in science",
|
| 93 |
subItems: [
|
| 94 |
-
"
|
| 95 |
-
"
|
| 96 |
-
"
|
| 97 |
],
|
| 98 |
},
|
| 99 |
{
|
| 100 |
-
label: "
|
| 101 |
description:
|
| 102 |
-
"
|
| 103 |
},
|
| 104 |
]),
|
| 105 |
|
|
@@ -114,9 +114,9 @@ export const COLUMN_TOOLTIPS = {
|
|
| 114 |
],
|
| 115 |
},
|
| 116 |
{
|
| 117 |
-
label: "Scoring",
|
| 118 |
description:
|
| 119 |
-
"
|
| 120 |
},
|
| 121 |
]),
|
| 122 |
|
|
@@ -125,7 +125,7 @@ export const COLUMN_TOOLTIPS = {
|
|
| 125 |
[
|
| 126 |
{
|
| 127 |
label: "Coverage",
|
| 128 |
-
description: "Expertly reviewed multichoice questions across domains",
|
| 129 |
subItems: [
|
| 130 |
"Medicine and healthcare",
|
| 131 |
"Law and ethics",
|
|
@@ -134,9 +134,9 @@ export const COLUMN_TOOLTIPS = {
|
|
| 134 |
],
|
| 135 |
},
|
| 136 |
{
|
| 137 |
-
label: "
|
| 138 |
description:
|
| 139 |
-
"
|
| 140 |
},
|
| 141 |
]
|
| 142 |
),
|
|
@@ -146,19 +146,21 @@ export const COLUMN_TOOLTIPS = {
|
|
| 146 |
label: "Definition",
|
| 147 |
description: "The fundamental structure and design of the model",
|
| 148 |
subItems: [
|
| 149 |
-
"
|
| 150 |
-
"
|
| 151 |
-
"
|
| 152 |
-
"
|
|
|
|
|
|
|
| 153 |
],
|
| 154 |
},
|
| 155 |
{
|
| 156 |
label: "Impact",
|
| 157 |
description: "How architecture affects model capabilities",
|
| 158 |
subItems: [
|
| 159 |
-
"
|
| 160 |
-
"
|
| 161 |
-
"
|
| 162 |
],
|
| 163 |
},
|
| 164 |
]),
|
|
@@ -169,10 +171,10 @@ export const COLUMN_TOOLTIPS = {
|
|
| 169 |
description:
|
| 170 |
"Data format used to store model weights and perform computations",
|
| 171 |
subItems: [
|
| 172 |
-
"
|
| 173 |
-
"
|
| 174 |
-
"
|
| 175 |
-
"GPTQ/AWQ:
|
| 176 |
],
|
| 177 |
},
|
| 178 |
{
|
|
@@ -181,40 +183,28 @@ export const COLUMN_TOOLTIPS = {
|
|
| 181 |
subItems: [
|
| 182 |
"Higher precision = better accuracy but more memory usage",
|
| 183 |
"Lower precision = faster inference and smaller size",
|
| 184 |
-
"Different hardware compatibility requirements",
|
| 185 |
"Trade-off between model quality and resource usage",
|
| 186 |
],
|
| 187 |
},
|
| 188 |
-
{
|
| 189 |
-
label: "Use Cases",
|
| 190 |
-
description: "Choosing the right precision format",
|
| 191 |
-
subItems: [
|
| 192 |
-
"Production deployment optimization",
|
| 193 |
-
"Resource-constrained environments",
|
| 194 |
-
"High-performance computing scenarios",
|
| 195 |
-
],
|
| 196 |
-
},
|
| 197 |
]),
|
| 198 |
|
| 199 |
FLAGS: createTooltipContent("Model Flags and Special Features:", [
|
| 200 |
{
|
| 201 |
-
label: "
|
| 202 |
-
description: "Special indicators and capabilities of the model",
|
| 203 |
subItems: [
|
| 204 |
-
"
|
| 205 |
-
"
|
| 206 |
-
"
|
| 207 |
-
"
|
| 208 |
],
|
| 209 |
},
|
| 210 |
{
|
| 211 |
-
label: "
|
| 212 |
-
description: "
|
| 213 |
subItems: [
|
| 214 |
-
"
|
| 215 |
-
"
|
| 216 |
-
"
|
| 217 |
-
"Flash Attention: Optimized attention implementation",
|
| 218 |
],
|
| 219 |
},
|
| 220 |
]),
|
|
@@ -260,7 +250,6 @@ export const COLUMN_TOOLTIPS = {
|
|
| 260 |
subItems: [
|
| 261 |
"Large models can have significant carbon footprints",
|
| 262 |
"Helps make informed choices about model selection",
|
| 263 |
-
"Promotes awareness of AI's environmental impact",
|
| 264 |
],
|
| 265 |
},
|
| 266 |
{
|
|
@@ -332,12 +321,12 @@ export const UI_TOOLTIPS = {
|
|
| 332 |
"Efficient models for edge devices, optimized for blazing fast inference.",
|
| 333 |
},
|
| 334 |
{
|
| 335 |
-
label: "Smol Models (
|
| 336 |
description:
|
| 337 |
-
"Efficient models for consumer hardware
|
| 338 |
},
|
| 339 |
{
|
| 340 |
-
label: "
|
| 341 |
description:
|
| 342 |
"A bit of everything here, with overall balanced performance and resource usage around 30B.",
|
| 343 |
},
|
|
|
|
| 48 |
subItems: ["Instruction following", "Formatting", "Generation"],
|
| 49 |
},
|
| 50 |
{
|
| 51 |
+
label: "Scoring: Accuracy",
|
| 52 |
+
description: "Was the format asked for strictly respected.",
|
| 53 |
},
|
| 54 |
]),
|
| 55 |
|
| 56 |
BBH: createTooltipContent("Big Bench Hard (BBH):", [
|
| 57 |
{
|
| 58 |
label: "Overview",
|
| 59 |
+
description: "Collection of challenging for LLM tasks across domains, for example",
|
| 60 |
subItems: [
|
| 61 |
"Language understanding",
|
| 62 |
"Mathematical reasoning",
|
|
|
|
| 64 |
],
|
| 65 |
},
|
| 66 |
{
|
| 67 |
+
label: "Scoring: Accuracy",
|
| 68 |
description:
|
| 69 |
+
"Was the correct choice selected among the options.",
|
| 70 |
},
|
| 71 |
]),
|
| 72 |
|
|
|
|
| 79 |
subItems: ["Complex algebra", "Geometry problems", "Advanced calculus"],
|
| 80 |
},
|
| 81 |
{
|
| 82 |
+
label: "Scoring: Exact match",
|
| 83 |
description:
|
| 84 |
+
"Was the solution generated correct and in the expected format",
|
| 85 |
},
|
| 86 |
]
|
| 87 |
),
|
|
|
|
| 91 |
label: "Focus",
|
| 92 |
description: "PhD-level knowledge multiple choice questions in science",
|
| 93 |
subItems: [
|
| 94 |
+
"Chemistry",
|
| 95 |
+
"Biology",
|
| 96 |
+
"Physics",
|
| 97 |
],
|
| 98 |
},
|
| 99 |
{
|
| 100 |
+
label: "Scoring: Accuracy",
|
| 101 |
description:
|
| 102 |
+
"Was the correct choice selected among the options.",
|
| 103 |
},
|
| 104 |
]),
|
| 105 |
|
|
|
|
| 114 |
],
|
| 115 |
},
|
| 116 |
{
|
| 117 |
+
label: "Scoring: Accuracy",
|
| 118 |
description:
|
| 119 |
+
"Was the correct choice selected among the options.",
|
| 120 |
},
|
| 121 |
]),
|
| 122 |
|
|
|
|
| 125 |
[
|
| 126 |
{
|
| 127 |
label: "Coverage",
|
| 128 |
+
description: "Expertly reviewed multichoice questions across domains, for example:",
|
| 129 |
subItems: [
|
| 130 |
"Medicine and healthcare",
|
| 131 |
"Law and ethics",
|
|
|
|
| 134 |
],
|
| 135 |
},
|
| 136 |
{
|
| 137 |
+
label: "Scoring: Accuracy",
|
| 138 |
description:
|
| 139 |
+
"Was the correct choice selected among the options.",
|
| 140 |
},
|
| 141 |
]
|
| 142 |
),
|
|
|
|
| 146 |
label: "Definition",
|
| 147 |
description: "The fundamental structure and design of the model",
|
| 148 |
subItems: [
|
| 149 |
+
"Pretrained: Foundational models, initially trained on large datasets without task-specific tuning, serving as a versatile base for further development.",
|
| 150 |
+
"Continuously Pretrained: Base models trained with a data mix evolving as the model is trained, with the addition of specialized data during the last training steps.",
|
| 151 |
+
"Fine-tuned: Base models, fine-tuned on specialised domain data (legal, medical, ...), and optimized for particular tasks.",
|
| 152 |
+
"Chat: Models fine-tuned with IFT, RLHF, DPO, and other techniques, to handle conversational contexts effectively.",
|
| 153 |
+
"Merged: Combining multiple models through weights averaging or similar methods.",
|
| 154 |
+
"Multimodal: Models which can handle several modalities (text & image/audio/video/...). We only evaluate the text capabilities.",
|
| 155 |
],
|
| 156 |
},
|
| 157 |
{
|
| 158 |
label: "Impact",
|
| 159 |
description: "How architecture affects model capabilities",
|
| 160 |
subItems: [
|
| 161 |
+
"Base models are expected to perform less well on instruction following evaluations, like IFEval.",
|
| 162 |
+
"Fine-tuned and chat models can be more verbose and more chatty than base models.",
|
| 163 |
+
"Merged models tend to exhibit good performance on benchmarks, which do not translate to real-world situations.",
|
| 164 |
],
|
| 165 |
},
|
| 166 |
]),
|
|
|
|
| 171 |
description:
|
| 172 |
"Data format used to store model weights and perform computations",
|
| 173 |
subItems: [
|
| 174 |
+
"bfloat16: Half precision (Brain Float format), good for stability",
|
| 175 |
+
"float16: Half precision",
|
| 176 |
+
"8bit/4bit: Quantized formats, for efficiency",
|
| 177 |
+
"GPTQ/AWQ: Quantized methods",
|
| 178 |
],
|
| 179 |
},
|
| 180 |
{
|
|
|
|
| 183 |
subItems: [
|
| 184 |
"Higher precision = better accuracy but more memory usage",
|
| 185 |
"Lower precision = faster inference and smaller size",
|
|
|
|
| 186 |
"Trade-off between model quality and resource usage",
|
| 187 |
],
|
| 188 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
]),
|
| 190 |
|
| 191 |
FLAGS: createTooltipContent("Model Flags and Special Features:", [
|
| 192 |
{
|
| 193 |
+
label: "Filters",
|
|
|
|
| 194 |
subItems: [
|
| 195 |
+
"Mixture of Expert: Uses a MoE architecture",
|
| 196 |
+
"Merged models: Created by averaging other models",
|
| 197 |
+
"Contaminated: Flagged by users from the community for (possibly accidental) cheating",
|
| 198 |
+
"Unavailable: No longer on the hub (private, deleted) or missing a license tag",
|
| 199 |
],
|
| 200 |
},
|
| 201 |
{
|
| 202 |
+
label: "Purpose",
|
| 203 |
+
description: "Why do people want to hide these models?",
|
| 204 |
subItems: [
|
| 205 |
+
"Mixture of Experts: These models can be too parameter heavy",
|
| 206 |
+
"Merged models: Performance on benchmarks tend to be inflated compared to real life usage",
|
| 207 |
+
"Contaminated: Performance on benchmarks is inflated and not reflecting real life usage",
|
|
|
|
| 208 |
],
|
| 209 |
},
|
| 210 |
]),
|
|
|
|
| 250 |
subItems: [
|
| 251 |
"Large models can have significant carbon footprints",
|
| 252 |
"Helps make informed choices about model selection",
|
|
|
|
| 253 |
],
|
| 254 |
},
|
| 255 |
{
|
|
|
|
| 321 |
"Efficient models for edge devices, optimized for blazing fast inference.",
|
| 322 |
},
|
| 323 |
{
|
| 324 |
+
label: "Smol Models (3B-7B)",
|
| 325 |
description:
|
| 326 |
+
"Efficient models for consumer hardware, optimized for fast inference.",
|
| 327 |
},
|
| 328 |
{
|
| 329 |
+
label: "Mid-range models (7B-65B)",
|
| 330 |
description:
|
| 331 |
"A bit of everything here, with overall balanced performance and resource usage around 30B.",
|
| 332 |
},
|