Maria Castellanos
commited on
Commit
·
9233e8b
1
Parent(s):
b2070e0
Add bootstrap
Browse files
about.py
CHANGED
|
@@ -11,18 +11,10 @@ ENDPOINTS = ["LogD",
|
|
| 11 |
"MBPB",
|
| 12 |
"MGMB"]
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
"R2",
|
| 19 |
-
"Spearman R",
|
| 20 |
-
"Kendall's Tau",
|
| 21 |
-
"data coverage (%)",
|
| 22 |
-
"submission_time",
|
| 23 |
-
"model_report"]
|
| 24 |
-
LB_COLS = ["user", "MAE", "R2", "Spearman R", "Kendall's Tau", "submission time", "model details",
|
| 25 |
-
"data coverage (%)"]
|
| 26 |
LB_AVG = ["user", "MA-RAE", "R2", "Spearman R", "Kendall's Tau", "submission time", "model details"] # Delete some columns for overall LB?
|
| 27 |
LB_DTYPES = ['markdown', 'number', 'number', 'number', 'number', 'str', 'markdown', 'number']
|
| 28 |
|
|
|
|
| 11 |
"MBPB",
|
| 12 |
"MGMB"]
|
| 13 |
|
| 14 |
+
STANDARD_COLS = ["endpoint", "user", "submission_time", "model_report"]
|
| 15 |
+
METRICS = ["MAE", "RAE", "R2", "Spearman R", "Kendall's Tau"]
|
| 16 |
+
# Final columns
|
| 17 |
+
LB_COLS = ["user", "MAE", "R2", "Spearman R", "Kendall's Tau", "submission time", "model details"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
LB_AVG = ["user", "MA-RAE", "R2", "Spearman R", "Kendall's Tau", "submission time", "model details"] # Delete some columns for overall LB?
|
| 19 |
LB_DTYPES = ['markdown', 'number', 'number', 'number', 'number', 'str', 'markdown', 'number']
|
| 20 |
|
app.py
CHANGED
|
@@ -4,17 +4,23 @@ from gradio.themes.utils import sizes
|
|
| 4 |
import pandas as pd
|
| 5 |
|
| 6 |
from evaluate import submit_data, evaluate_data
|
| 7 |
-
from utils import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
from about import ENDPOINTS, LB_COLS, LB_AVG, LB_DTYPES
|
| 10 |
|
| 11 |
|
| 12 |
ALL_EPS = ['Average'] + ENDPOINTS
|
| 13 |
|
| 14 |
-
def build_leaderboard(
|
|
|
|
| 15 |
per_ep = {}
|
| 16 |
for ep in ALL_EPS:
|
| 17 |
-
df = df_results[df_results["
|
| 18 |
if df is None:
|
| 19 |
print(f"[refresh] {ep} returned None; using empty DF")
|
| 20 |
if df.empty:
|
|
@@ -28,11 +34,15 @@ def build_leaderboard(df_results):
|
|
| 28 |
df['model details'] = df['model_report'].apply(lambda x: make_tag_clickable(x)).astype(str)
|
| 29 |
|
| 30 |
if ep == "Average":
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
| 33 |
per_ep[ep] = sorted_df[LB_AVG]
|
| 34 |
else:
|
| 35 |
-
sorted_df = df.sort_values(by="
|
|
|
|
| 36 |
per_ep[ep] = sorted_df[LB_COLS]
|
| 37 |
|
| 38 |
return per_ep
|
|
@@ -65,7 +75,7 @@ def gradio_interface():
|
|
| 65 |
Go to the **Leaderboard** to check out how the challenge is going.
|
| 66 |
To participate, head out to the **Submit** tab and upload your results as a `CSV` file.
|
| 67 |
|
| 68 |
-
**The challenge is not yet open for submissions.
|
| 69 |
"""
|
| 70 |
)
|
| 71 |
with gr.Column(scale=2): # smaller side column for logo
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
|
| 6 |
from evaluate import submit_data, evaluate_data
|
| 7 |
+
from utils import (
|
| 8 |
+
make_tag_clickable,
|
| 9 |
+
make_user_clickable,
|
| 10 |
+
fetch_dataset_df,
|
| 11 |
+
map_metric_to_stats,
|
| 12 |
+
)
|
| 13 |
|
| 14 |
from about import ENDPOINTS, LB_COLS, LB_AVG, LB_DTYPES
|
| 15 |
|
| 16 |
|
| 17 |
ALL_EPS = ['Average'] + ENDPOINTS
|
| 18 |
|
| 19 |
+
def build_leaderboard(df_results0):
|
| 20 |
+
df_results = df_results0.rename(columns={"endpoint": "Endpoint"})
|
| 21 |
per_ep = {}
|
| 22 |
for ep in ALL_EPS:
|
| 23 |
+
df = df_results[df_results["Endpoint"] == ep].copy()
|
| 24 |
if df is None:
|
| 25 |
print(f"[refresh] {ep} returned None; using empty DF")
|
| 26 |
if df.empty:
|
|
|
|
| 34 |
df['model details'] = df['model_report'].apply(lambda x: make_tag_clickable(x)).astype(str)
|
| 35 |
|
| 36 |
if ep == "Average":
|
| 37 |
+
# MA-RAE is the average of the RAE per endpoint
|
| 38 |
+
df = df.rename(columns={"mean_RAE": "mean_MA-RAE",
|
| 39 |
+
"std_RAE": "std_MA-RAE"})
|
| 40 |
+
sorted_df = df.sort_values(by='mean_MA-RAE', ascending=True, kind="stable")
|
| 41 |
+
sorted_df = map_metric_to_stats(sorted_df, average=True)
|
| 42 |
per_ep[ep] = sorted_df[LB_AVG]
|
| 43 |
else:
|
| 44 |
+
sorted_df = df.sort_values(by="mean_MAE", ascending=True, kind="stable")
|
| 45 |
+
sorted_df = map_metric_to_stats(sorted_df)
|
| 46 |
per_ep[ep] = sorted_df[LB_COLS]
|
| 47 |
|
| 48 |
return per_ep
|
|
|
|
| 75 |
Go to the **Leaderboard** to check out how the challenge is going.
|
| 76 |
To participate, head out to the **Submit** tab and upload your results as a `CSV` file.
|
| 77 |
|
| 78 |
+
**The challenge is not yet open for submissions. Please stay tuned for the official launch date!**
|
| 79 |
"""
|
| 80 |
)
|
| 81 |
with gr.Column(scale=2): # smaller side column for logo
|
evaluate.py
CHANGED
|
@@ -3,7 +3,7 @@ import pandas as pd
|
|
| 3 |
from pathlib import Path
|
| 4 |
from typing import Optional
|
| 5 |
from about import ENDPOINTS, API, submissions_repo, results_repo, test_repo
|
| 6 |
-
from utils import
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
import datetime
|
| 9 |
import io
|
|
@@ -157,7 +157,7 @@ def submit_data(predictions_file: str,
|
|
| 157 |
path_in_repo=destination_csv,
|
| 158 |
repo_id=submissions_repo,
|
| 159 |
repo_type="dataset",
|
| 160 |
-
commit_message=f"Add submission for
|
| 161 |
)
|
| 162 |
# Upload the metadata JSON file
|
| 163 |
meta_bytes = io.BytesIO(json.dumps(meta.model_dump(), indent=2).encode("utf-8"))
|
|
@@ -166,7 +166,7 @@ def submit_data(predictions_file: str,
|
|
| 166 |
path_in_repo=destination_json,
|
| 167 |
repo_id=submissions_repo,
|
| 168 |
repo_type="dataset",
|
| 169 |
-
commit_message=f"Add metadata for
|
| 170 |
)
|
| 171 |
|
| 172 |
return "✅ Your submission has been received! Your scores will appear on the leaderboard shortly.", destination_csv
|
|
@@ -265,7 +265,9 @@ def calculate_metrics(
|
|
| 265 |
raise gr.Error("The predictions file is missing some molecules present in the test set. Please ensure all molecules are included.")
|
| 266 |
# TODO: What to do when a molecule is duplicated in the Predictions file?
|
| 267 |
|
| 268 |
-
|
|
|
|
|
|
|
| 269 |
for i, measurement in enumerate(ENDPOINTS):
|
| 270 |
df_pred = results_dataframe[['Name', measurement]].copy()
|
| 271 |
# Only use data with operator "="
|
|
@@ -295,32 +297,37 @@ def calculate_metrics(
|
|
| 295 |
coverage = (n_pairs / n_total * 100.0) if n_total else 0.0
|
| 296 |
merged = merged.sort_values("Name", kind="stable")
|
| 297 |
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
y_pred =
|
| 303 |
-
y_true =
|
| 304 |
-
# Force log scale for all endpoints except LogD (for outliers)
|
| 305 |
-
if measurement != "LogD":
|
| 306 |
-
y_pred = np.log10(y_pred)
|
| 307 |
-
y_true = np.log10(y_true)
|
| 308 |
-
mae, rae, r2, spearman, ktau = metrics_per_ep(y_pred, y_true)
|
| 309 |
-
|
| 310 |
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
|
|
|
|
|
|
|
|
|
|
| 319 |
# Average results
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
avg_row
|
|
|
|
| 324 |
df_with_average = pd.concat([df_results, pd.DataFrame([avg_row])], ignore_index=True)
|
| 325 |
|
| 326 |
return df_with_average
|
|
|
|
| 3 |
from pathlib import Path
|
| 4 |
from typing import Optional
|
| 5 |
from about import ENDPOINTS, API, submissions_repo, results_repo, test_repo
|
| 6 |
+
from utils import bootstrap_metrics
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
import datetime
|
| 9 |
import io
|
|
|
|
| 157 |
path_in_repo=destination_csv,
|
| 158 |
repo_id=submissions_repo,
|
| 159 |
repo_type="dataset",
|
| 160 |
+
commit_message=f"Add submission for user at {ts}"
|
| 161 |
)
|
| 162 |
# Upload the metadata JSON file
|
| 163 |
meta_bytes = io.BytesIO(json.dumps(meta.model_dump(), indent=2).encode("utf-8"))
|
|
|
|
| 166 |
path_in_repo=destination_json,
|
| 167 |
repo_id=submissions_repo,
|
| 168 |
repo_type="dataset",
|
| 169 |
+
commit_message=f"Add metadata for user submission at {ts}"
|
| 170 |
)
|
| 171 |
|
| 172 |
return "✅ Your submission has been received! Your scores will appear on the leaderboard shortly.", destination_csv
|
|
|
|
| 265 |
raise gr.Error("The predictions file is missing some molecules present in the test set. Please ensure all molecules are included.")
|
| 266 |
# TODO: What to do when a molecule is duplicated in the Predictions file?
|
| 267 |
|
| 268 |
+
# Compute leaderboard DataFrame
|
| 269 |
+
final_cols = ["MAE", "RAE", "R2", "Spearman R", "Kendall's Tau"]
|
| 270 |
+
all_endpoint_results = []
|
| 271 |
for i, measurement in enumerate(ENDPOINTS):
|
| 272 |
df_pred = results_dataframe[['Name', measurement]].copy()
|
| 273 |
# Only use data with operator "="
|
|
|
|
| 297 |
coverage = (n_pairs / n_total * 100.0) if n_total else 0.0
|
| 298 |
merged = merged.sort_values("Name", kind="stable")
|
| 299 |
|
| 300 |
+
y_pred = merged[f"{measurement}_pred"].to_numpy()
|
| 301 |
+
y_true = merged[f"{measurement}_true"].to_numpy()
|
| 302 |
+
# Force log scale for all endpoints except LogD (for outliers)
|
| 303 |
+
if measurement != "LogD":
|
| 304 |
+
y_pred = np.log10(y_pred)
|
| 305 |
+
y_true = np.log10(y_true)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
+
# Calculate dataframe with the metrics for 1000 bootstraps
|
| 308 |
+
bootstrap_df = bootstrap_metrics(y_pred, y_true, measurement, n_bootstrap_samples=1000)
|
| 309 |
+
df_endpoint = bootstrap_df.pivot_table(
|
| 310 |
+
index=["Endpoint"],
|
| 311 |
+
columns=final_cols,
|
| 312 |
+
values="Value",
|
| 313 |
+
aggfunc=["mean", "std"]
|
| 314 |
+
).reset_index()
|
| 315 |
+
# Get a df with columns 'mean_MAE', 'std_MAE', ...
|
| 316 |
+
df_endpoint.columns = [
|
| 317 |
+
f'{j}_{i}' if i != '' else j for i, j in df_endpoint.columns
|
| 318 |
+
]
|
| 319 |
+
df_endpoint.rename(columns={'_Endpoint': 'Endpoint'}, inplace=True)
|
| 320 |
+
all_endpoint_results.append(df_endpoint)
|
| 321 |
|
| 322 |
+
df_results = pd.concat(all_endpoint_results, ignore_index=True)
|
| 323 |
+
mean_cols = [f'{m}_mean' for m in final_cols]
|
| 324 |
+
std_cols = [f'{m}_std' for m in final_cols]
|
| 325 |
# Average results
|
| 326 |
+
macro_means = df_results[mean_cols].mean()
|
| 327 |
+
macro_stds = df_results[std_cols].mean()
|
| 328 |
+
avg_row = {"endpoint": "Average"}
|
| 329 |
+
avg_row.update(macro_means.to_dict())
|
| 330 |
+
avg_row.update(macro_stds.to_dict())
|
| 331 |
df_with_average = pd.concat([df_results, pd.DataFrame([avg_row])], ignore_index=True)
|
| 332 |
|
| 333 |
return df_with_average
|
utils.py
CHANGED
|
@@ -1,22 +1,26 @@
|
|
| 1 |
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
from datasets import load_dataset
|
| 5 |
from about import results_repo
|
| 6 |
-
from about import
|
| 7 |
|
| 8 |
-
def make_user_clickable(name):
|
| 9 |
link =f'https://huggingface.co/{name}'
|
| 10 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{name}</a>'
|
| 11 |
-
def make_tag_clickable(tag):
|
| 12 |
return f'<a target="_blank" href="{tag}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">link</a>'
|
| 13 |
|
| 14 |
def fetch_dataset_df():
|
| 15 |
dset = load_dataset(results_repo, split='train', download_mode="force_redownload")
|
| 16 |
full_df = dset.to_pandas()
|
|
|
|
|
|
|
|
|
|
| 17 |
assert all(
|
| 18 |
-
col in full_df.columns for col in
|
| 19 |
-
), f"Expected columns
|
| 20 |
|
| 21 |
df = full_df.copy()
|
| 22 |
df = df[df["user"] != "test"].copy()
|
|
@@ -33,7 +37,43 @@ def fetch_dataset_df():
|
|
| 33 |
latest.rename(columns={"submission_time": "submission time"}, inplace=True)
|
| 34 |
return latest
|
| 35 |
|
| 36 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
from scipy.stats import spearmanr, kendalltau
|
| 38 |
from sklearn.metrics import mean_absolute_error, r2_score
|
| 39 |
mae = mean_absolute_error(true, pred)
|
|
@@ -45,4 +85,76 @@ def metrics_per_ep(pred, true):
|
|
| 45 |
spr, _ = spearmanr(true, pred)
|
| 46 |
ktau, _ = kendalltau(true, pred)
|
| 47 |
|
| 48 |
-
return mae, rae, r2, spr, ktau
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
+
from typing import Tuple
|
| 5 |
from datasets import load_dataset
|
| 6 |
from about import results_repo
|
| 7 |
+
from about import METRICS, STANDARD_COLS
|
| 8 |
|
| 9 |
+
def make_user_clickable(name: str):
|
| 10 |
link =f'https://huggingface.co/{name}'
|
| 11 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{name}</a>'
|
| 12 |
+
def make_tag_clickable(tag: str):
|
| 13 |
return f'<a target="_blank" href="{tag}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">link</a>'
|
| 14 |
|
| 15 |
def fetch_dataset_df():
|
| 16 |
dset = load_dataset(results_repo, split='train', download_mode="force_redownload")
|
| 17 |
full_df = dset.to_pandas()
|
| 18 |
+
expected_mean_cols = [f"mean_{col}" for col in METRICS]
|
| 19 |
+
expected_std_cols = [f"std_{col}" for col in METRICS]
|
| 20 |
+
expected_all_cols = STANDARD_COLS + expected_mean_cols + expected_std_cols
|
| 21 |
assert all(
|
| 22 |
+
col in full_df.columns for col in expected_all_cols
|
| 23 |
+
), f"Expected columns not found in {full_df.columns}. Missing columns: {set(expected_all_cols) - set(full_df.columns)}"
|
| 24 |
|
| 25 |
df = full_df.copy()
|
| 26 |
df = df[df["user"] != "test"].copy()
|
|
|
|
| 37 |
latest.rename(columns={"submission_time": "submission time"}, inplace=True)
|
| 38 |
return latest
|
| 39 |
|
| 40 |
+
def bootstrap_sampling(size: int, n_samples: int) -> np.ndarray:
|
| 41 |
+
"""
|
| 42 |
+
Generate bootstrap samples for a given size and number of samples.
|
| 43 |
+
|
| 44 |
+
Parameters
|
| 45 |
+
----------
|
| 46 |
+
size : int
|
| 47 |
+
The size of the data.
|
| 48 |
+
n_samples : int
|
| 49 |
+
The number of samples to generate.
|
| 50 |
+
|
| 51 |
+
Returns
|
| 52 |
+
-------
|
| 53 |
+
np.ndarray
|
| 54 |
+
Returns a numpy array of the bootstrap samples.
|
| 55 |
+
"""
|
| 56 |
+
rng = np.random.default_rng(0)
|
| 57 |
+
return rng.choice(size, size=(n_samples, size), replace=True)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def metrics_per_ep(pred: np.ndarray,
|
| 61 |
+
true: np.ndarray
|
| 62 |
+
)->Tuple[float, float, float, float]:
|
| 63 |
+
"""Predict evaluation metrics for a single sample
|
| 64 |
+
|
| 65 |
+
Parameters
|
| 66 |
+
----------
|
| 67 |
+
pred : np.ndarray
|
| 68 |
+
Array with predictions
|
| 69 |
+
true : np.ndarray
|
| 70 |
+
Array with actual values
|
| 71 |
+
|
| 72 |
+
Returns
|
| 73 |
+
-------
|
| 74 |
+
Tuple[float, float, float, float]
|
| 75 |
+
Resulting metrics: (MAE, RAE, R2, Spearman R, Kendall's Tau)
|
| 76 |
+
"""
|
| 77 |
from scipy.stats import spearmanr, kendalltau
|
| 78 |
from sklearn.metrics import mean_absolute_error, r2_score
|
| 79 |
mae = mean_absolute_error(true, pred)
|
|
|
|
| 85 |
spr, _ = spearmanr(true, pred)
|
| 86 |
ktau, _ = kendalltau(true, pred)
|
| 87 |
|
| 88 |
+
return mae, rae, r2, spr, ktau
|
| 89 |
+
|
| 90 |
+
def bootstrap_metrics(pred: np.ndarray,
|
| 91 |
+
true: np.ndarray,
|
| 92 |
+
endpoint: str,
|
| 93 |
+
n_bootstrap_samples=1000
|
| 94 |
+
)->pd.DataFrame:
|
| 95 |
+
"""Calculate bootstrap metrics given predicted and true values
|
| 96 |
+
|
| 97 |
+
Parameters
|
| 98 |
+
----------
|
| 99 |
+
pred : np.ndarray
|
| 100 |
+
Predicted endpoints
|
| 101 |
+
true : np.ndarray
|
| 102 |
+
Actual endpoint values
|
| 103 |
+
endpoint : str
|
| 104 |
+
String with endpoint
|
| 105 |
+
n_bootstrap_samples : int, optional
|
| 106 |
+
Size of bootstrapsample, by default 1000
|
| 107 |
+
|
| 108 |
+
Returns
|
| 109 |
+
-------
|
| 110 |
+
pd.DataFrame
|
| 111 |
+
Dataframe with estimated metric per bootstrap sample for the given endpoint
|
| 112 |
+
"""
|
| 113 |
+
cols = ["Sample", "Endpoint", "Metric", "Value"]
|
| 114 |
+
bootstrap_results = pd.DataFrame(columns=cols, dtype=[int, str, str, float])
|
| 115 |
+
for i, indx in enumerate(
|
| 116 |
+
bootstrap_sampling(true.shape[0], n_bootstrap_samples)
|
| 117 |
+
):
|
| 118 |
+
mae, rae, r2, spr, ktau = metrics_per_ep(pred[indx], true[indx])
|
| 119 |
+
scores = pd.DataFrame(
|
| 120 |
+
[
|
| 121 |
+
[i, endpoint, "MAE", mae],
|
| 122 |
+
[i, endpoint, "RAE", rae],
|
| 123 |
+
[i, endpoint, "R2", r2],
|
| 124 |
+
[i, endpoint, "Spearman R", spr],
|
| 125 |
+
[i, endpoint, "Kendall's Tau", ktau]
|
| 126 |
+
],
|
| 127 |
+
columns=cols
|
| 128 |
+
)
|
| 129 |
+
bootstrap_results = pd.concat([bootstrap_results, scores])
|
| 130 |
+
return bootstrap_results
|
| 131 |
+
|
| 132 |
+
def map_metric_to_stats(df: pd.DataFrame, average=False) -> pd.DataFrame:
|
| 133 |
+
"""Map mean and std to 'mean +/- std' string for each metric
|
| 134 |
+
|
| 135 |
+
Parameters
|
| 136 |
+
----------
|
| 137 |
+
df : pd.DataFrame
|
| 138 |
+
Dataframe to modify
|
| 139 |
+
average : bool, optional
|
| 140 |
+
Whether the dataframe contains average info, by default False
|
| 141 |
+
|
| 142 |
+
Returns
|
| 143 |
+
-------
|
| 144 |
+
pd.DataFrame
|
| 145 |
+
Modified dataframe
|
| 146 |
+
"""
|
| 147 |
+
metric_cols = METRICS[:]
|
| 148 |
+
if average:
|
| 149 |
+
metric_cols[1] = "MA-RAE"
|
| 150 |
+
cols_drop = []
|
| 151 |
+
for col in metric_cols:
|
| 152 |
+
mean_col = f"mean_{col}"
|
| 153 |
+
std_col = f"std_{col}"
|
| 154 |
+
df[col] = df.apply(
|
| 155 |
+
lambda row: f"{row[mean_col]:.2f} +/- {row[std_col]:.2f}",
|
| 156 |
+
axis=1
|
| 157 |
+
)
|
| 158 |
+
cols_drop.extend([mean_col, std_col])
|
| 159 |
+
df = df.drop(columns=cols_drop)
|
| 160 |
+
return df
|