Maria Castellanos commited on
Commit
c2e306f
Β·
1 Parent(s): 20ed309

table formatting

Browse files
Files changed (1) hide show
  1. app.py +43 -15
app.py CHANGED
@@ -130,20 +130,20 @@ def gradio_interface():
130
 
131
  The training set contains the following parameters:
132
 
133
- | Column | Unit | data type | Description |
134
- |:-----------------------------|-----------|-----------|:-------------|
135
- | Molecule Name | | str | Identifier for the molecule |
136
- | Smiles | | str | Text representation of the 2D molecular structure |
137
- | LogD | | float | LogD calculation |
138
- | KSol | uM | float | Kinetic Solubility |
139
- | MLM CLint | mL/min/kg | float | Mouse Liver Microsomal |
140
- | HLM CLint | mL/min/kg | float | Human Liver Microsomal |
141
- | Caco-2 Permeability Efflux | | float | Caco-2 Permeability Efflux |
142
- | Caco-2 Permeability Papp A>B | 10^-6 cm/s| float | Caco-2 Permeability Papp A>B |
143
- | MPPB | % Unbound | float | Mouse Plasma Protein Binding |
144
- | MBPB | % Unbound | float | Mouse Brain Protein Binding |
145
- | RLM CLint | mL/min/kg | float | Rat Liver Microsomal Stability |
146
- | MGMB. | % Unbound | float | Mouse Gastrocnemius Muscle Binding |
147
 
148
  You can download the training data from the [Hugging Face dataset](https://huggingface.co/datasets/OpenADMET/openadmet-challenge-training-set).
149
  The test set will remained blinded until the challenge submission deadline. You will be tasked with predicting the same set of ADMET endpoints for the test set molecules.
@@ -180,12 +180,40 @@ def gradio_interface():
180
  font-weight: 700 !important;
181
  }
182
  </style>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183
  """)
184
  with gr.Tabs(elem_classes="tab-buttons"):
185
  lboard_dict = {}
186
 
187
  with gr.TabItem("πŸ“– About"):
188
- gr.Markdown(welcome_md)
189
 
190
  with gr.TabItem("πŸš€ Leaderboard", elem_id="lb_subtabs"):
191
  gr.Markdown("View the leaderboard for each ADMET endpoint by selecting the appropiate tab.")
 
130
 
131
  The training set contains the following parameters:
132
 
133
+ | Column | Unit | Type | Description |
134
+ |:---------------------------- |:----------: |:--------: |:----------------------------------------------|
135
+ | Molecule Name | | str | Identifier for the molecule |
136
+ | Smiles | | str | Text representation of the 2D molecular structure |
137
+ | LogD | | float | LogD calculation |
138
+ | KSol | uM | float | Kinetic Solubility |
139
+ | MLM CLint | mL/min/kg | float | Mouse Liver Microsomal |
140
+ | HLM CLint | mL/min/kg | float | Human Liver Microsomal |
141
+ | Caco-2 Permeability Efflux | | float | Caco-2 Permeability Efflux |
142
+ | Caco-2 Permeability Papp A>B | 10^-6 cm/s | float | Caco-2 Permeability Papp A>B |
143
+ | MPPB | % Unbound | float | Mouse Plasma Protein Binding |
144
+ | MBPB | % Unbound | float | Mouse Brain Protein Binding |
145
+ | RLM CLint | mL/min/kg | float | Rat Liver Microsomal Stability |
146
+ | MGMB. | % Unbound | float | Mouse Gastrocnemius Muscle Binding |
147
 
148
  You can download the training data from the [Hugging Face dataset](https://huggingface.co/datasets/OpenADMET/openadmet-challenge-training-set).
149
  The test set will remained blinded until the challenge submission deadline. You will be tasked with predicting the same set of ADMET endpoints for the test set molecules.
 
180
  font-weight: 700 !important;
181
  }
182
  </style>
183
+ <style>
184
+ #welcome-md table {
185
+ width: 60%;
186
+ border-collapse: collapse;
187
+ font-size: 0.95rem;
188
+ line-height: 1.2; /* tighter vertical spacing */
189
+ }
190
+ #welcome-md th, #welcome-md td {
191
+ padding: 6px 10px; /* reduce cell padding */
192
+ border: 1px solid rgba(0,0,0,0.9);
193
+ vertical-align: middle;
194
+ }
195
+ #welcome-md thead th {
196
+ background: var(--panel-background-fill, #f5f5f7);
197
+ font-weight: 1000;
198
+ }
199
+ /* Header shading */
200
+ #welcome-md thead th:nth-child(2),
201
+ #welcome-md thead th:nth-child(3) {
202
+ text-align: center;
203
+ }
204
+ /* Zebra striping */
205
+ #welcome-md tbody tr:nth-child(odd) { background: rgba(0,0,0,0.03); }
206
+ #welcome-md tbody tr:hover { background: rgba(0,0,0,0.06); }
207
+ /* Align columns */
208
+ #welcome-md td:nth-child(2),
209
+ #welcome-md td:nth-child(3) { text-align: center; white-space: nowrap; }
210
+ </style>
211
  """)
212
  with gr.Tabs(elem_classes="tab-buttons"):
213
  lboard_dict = {}
214
 
215
  with gr.TabItem("πŸ“– About"):
216
+ gr.Markdown(welcome_md, elem_id="welcome-md")
217
 
218
  with gr.TabItem("πŸš€ Leaderboard", elem_id="lb_subtabs"):
219
  gr.Markdown("View the leaderboard for each ADMET endpoint by selecting the appropiate tab.")