Maria Castellanos
commited on
Commit
Β·
c2e306f
1
Parent(s):
20ed309
table formatting
Browse files
app.py
CHANGED
|
@@ -130,20 +130,20 @@ def gradio_interface():
|
|
| 130 |
|
| 131 |
The training set contains the following parameters:
|
| 132 |
|
| 133 |
-
| Column |
|
| 134 |
-
|
| 135 |
-
| Molecule Name |
|
| 136 |
-
| Smiles |
|
| 137 |
-
| LogD |
|
| 138 |
-
| KSol | uM
|
| 139 |
-
| MLM CLint | mL/min/kg
|
| 140 |
-
| HLM CLint | mL/min/kg
|
| 141 |
-
| Caco-2 Permeability Efflux |
|
| 142 |
-
| Caco-2 Permeability Papp A>B | 10^-6 cm/s| float | Caco-2 Permeability Papp A>B |
|
| 143 |
-
| MPPB | % Unbound
|
| 144 |
-
| MBPB | % Unbound
|
| 145 |
-
| RLM CLint | mL/min/kg
|
| 146 |
-
| MGMB. | % Unbound
|
| 147 |
|
| 148 |
You can download the training data from the [Hugging Face dataset](https://huggingface.co/datasets/OpenADMET/openadmet-challenge-training-set).
|
| 149 |
The test set will remained blinded until the challenge submission deadline. You will be tasked with predicting the same set of ADMET endpoints for the test set molecules.
|
|
@@ -180,12 +180,40 @@ def gradio_interface():
|
|
| 180 |
font-weight: 700 !important;
|
| 181 |
}
|
| 182 |
</style>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
""")
|
| 184 |
with gr.Tabs(elem_classes="tab-buttons"):
|
| 185 |
lboard_dict = {}
|
| 186 |
|
| 187 |
with gr.TabItem("π About"):
|
| 188 |
-
gr.Markdown(welcome_md)
|
| 189 |
|
| 190 |
with gr.TabItem("π Leaderboard", elem_id="lb_subtabs"):
|
| 191 |
gr.Markdown("View the leaderboard for each ADMET endpoint by selecting the appropiate tab.")
|
|
|
|
| 130 |
|
| 131 |
The training set contains the following parameters:
|
| 132 |
|
| 133 |
+
| Column | Unit | Type | Description |
|
| 134 |
+
|:---------------------------- |:----------: |:--------: |:----------------------------------------------|
|
| 135 |
+
| Molecule Name | | str | Identifier for the molecule |
|
| 136 |
+
| Smiles | | str | Text representation of the 2D molecular structure |
|
| 137 |
+
| LogD | | float | LogD calculation |
|
| 138 |
+
| KSol | uM | float | Kinetic Solubility |
|
| 139 |
+
| MLM CLint | mL/min/kg | float | Mouse Liver Microsomal |
|
| 140 |
+
| HLM CLint | mL/min/kg | float | Human Liver Microsomal |
|
| 141 |
+
| Caco-2 Permeability Efflux | | float | Caco-2 Permeability Efflux |
|
| 142 |
+
| Caco-2 Permeability Papp A>B | 10^-6 cm/s | float | Caco-2 Permeability Papp A>B |
|
| 143 |
+
| MPPB | % Unbound | float | Mouse Plasma Protein Binding |
|
| 144 |
+
| MBPB | % Unbound | float | Mouse Brain Protein Binding |
|
| 145 |
+
| RLM CLint | mL/min/kg | float | Rat Liver Microsomal Stability |
|
| 146 |
+
| MGMB. | % Unbound | float | Mouse Gastrocnemius Muscle Binding |
|
| 147 |
|
| 148 |
You can download the training data from the [Hugging Face dataset](https://huggingface.co/datasets/OpenADMET/openadmet-challenge-training-set).
|
| 149 |
The test set will remained blinded until the challenge submission deadline. You will be tasked with predicting the same set of ADMET endpoints for the test set molecules.
|
|
|
|
| 180 |
font-weight: 700 !important;
|
| 181 |
}
|
| 182 |
</style>
|
| 183 |
+
<style>
|
| 184 |
+
#welcome-md table {
|
| 185 |
+
width: 60%;
|
| 186 |
+
border-collapse: collapse;
|
| 187 |
+
font-size: 0.95rem;
|
| 188 |
+
line-height: 1.2; /* tighter vertical spacing */
|
| 189 |
+
}
|
| 190 |
+
#welcome-md th, #welcome-md td {
|
| 191 |
+
padding: 6px 10px; /* reduce cell padding */
|
| 192 |
+
border: 1px solid rgba(0,0,0,0.9);
|
| 193 |
+
vertical-align: middle;
|
| 194 |
+
}
|
| 195 |
+
#welcome-md thead th {
|
| 196 |
+
background: var(--panel-background-fill, #f5f5f7);
|
| 197 |
+
font-weight: 1000;
|
| 198 |
+
}
|
| 199 |
+
/* Header shading */
|
| 200 |
+
#welcome-md thead th:nth-child(2),
|
| 201 |
+
#welcome-md thead th:nth-child(3) {
|
| 202 |
+
text-align: center;
|
| 203 |
+
}
|
| 204 |
+
/* Zebra striping */
|
| 205 |
+
#welcome-md tbody tr:nth-child(odd) { background: rgba(0,0,0,0.03); }
|
| 206 |
+
#welcome-md tbody tr:hover { background: rgba(0,0,0,0.06); }
|
| 207 |
+
/* Align columns */
|
| 208 |
+
#welcome-md td:nth-child(2),
|
| 209 |
+
#welcome-md td:nth-child(3) { text-align: center; white-space: nowrap; }
|
| 210 |
+
</style>
|
| 211 |
""")
|
| 212 |
with gr.Tabs(elem_classes="tab-buttons"):
|
| 213 |
lboard_dict = {}
|
| 214 |
|
| 215 |
with gr.TabItem("π About"):
|
| 216 |
+
gr.Markdown(welcome_md, elem_id="welcome-md")
|
| 217 |
|
| 218 |
with gr.TabItem("π Leaderboard", elem_id="lb_subtabs"):
|
| 219 |
gr.Markdown("View the leaderboard for each ADMET endpoint by selecting the appropiate tab.")
|