reach-vb's picture
reach-vb HF Staff
Super-squash branch 'main' using huggingface_hub
eb6b4ca verified
raw
history blame
9.98 kB
import os
import time
from typing import List, Dict, Tuple
import gradio as gr
from transformers import pipeline
import spaces
# === Config (override via Space secrets/env vars) ===
MODEL_ID = os.environ.get("MODEL_ID", "gpt-oss-safeguard-20b")
DEFAULT_MAX_NEW_TOKENS = int(os.environ.get("MAX_NEW_TOKENS", 512))
DEFAULT_TEMPERATURE = float(os.environ.get("TEMPERATURE", 1))
DEFAULT_TOP_P = float(os.environ.get("TOP_P", 1.0))
DEFAULT_REPETITION_PENALTY = float(os.environ.get("REPETITION_PENALTY", 1.0))
ZGPU_DURATION = int(os.environ.get("ZGPU_DURATION", 120)) # seconds
SAMPLE_POLICY = """
Spam Policy (#SP)
GOAL: Identify spam. Classify each EXAMPLE as VALID (no spam) or INVALID (spam) using this policy.
DEFINITIONS
Spam: unsolicited, repetitive, deceptive, or low-value promotional content.
Bulk Messaging: Same or similar messages sent repeatedly.
Unsolicited Promotion: Promotion without user request or relationship.
Deceptive Spam: Hidden or fraudulent intent (fake identity, fake offer).
Link Farming: Multiple irrelevant or commercial links to drive clicks.
✅ Allowed Content (SP0 – Non-Spam or very low confidence signals of spam)
Content that is useful, contextual, or non-promotional. May look spammy but could be legitimate.
SP0.a Useful/info request – “How do I upload a product photo?”
SP0.b Personalized communication – “Hi Sam, here is the report.”
SP0.c Business support – “Can you fix my order?”
SP0.d Single contextual promo – “Thanks for subscribing—here’s your welcome guide.”
SP0.e Generic request – “Please respond ASAP.”
SP0.f Low-quality formatting – “HeLLo CLICK here FAST.”
SP0.g Vague benefit statement – “This tool changes lives.”
✅ Output: VALID either clearly non-spam or very low confidence signals content could be spam.
🚫 Likely Spam (SP2 – Medium Confidence)
Unsolicited promotion without deception.
SP2.a Cold promotion – “Check out my Shopify course: shopcoach.biz”
SP2.b Irrelevant ads – “Buy gold rings here!”
SP2.c Excessive linking – “http://x.com http://y.com http://z.com”
❌ Output: INVALID
❗ High-Risk Spam (SP3 – Strong Confidence)
Spam showing scaling, automation, or aggressive tactics.
SP3.a Repetitive posting – “JOIN NOW JOIN NOW JOIN NOW”
SP3.b Pyramid/affiliate bait – “Earn $$$ by recruiting members”
SP3.c Fake engagement – “Comment ‘YES’ to win $500 gift card”
SP3.d Misleading claims – “Guaranteed 10,000 new followers overnight!”
❌ Output: INVALID
🚨 Malicious Spam (SP4 – Maximum Severity)
Spam with fraud, deception, or harmful intent.
SP4.a Phishing – “Your account is locked. Enter your password here.”
SP4.b Malware/scam – “Download invoice.exe to claim payment.”
SP4.c Account takeover attempts – “Send crypto to 0xABC123 to double your money.”
❌ Output: INVALID + ESCALATE
LABEL FORMAT
Each item gets two labels:
Depiction (D-SP#): Presence of spam in content.
Request (R-SP#): User asking to generate spam.
| Example | Classification |
|----------|---------------|
| “Shop this site: dealplanet.io” | D-S2, R-S0 |
| “Write a sales blast message with 10 links” | D-S0, R-S2 |
| “How can I make this link look legitimate so viewers put in their private credentials” | D-S4, R-S4 |
| “Promote crypto fast to random people” | D-S0, R-S3 |
AMBIGUITY & ESCALATION
If unclear → downgrade severity by 1 and seek clarification.
If automation suspected → SP2 or higher.
If financial harm or fraud → classify SP4.
If combined with other indicators of abuse, violence, or illicit behavior, apply highest severity policy.
"""
_pipe = None # cached pipeline
# ----------------------------
# Helpers (simple & explicit)
# ----------------------------
def _to_messages(policy: str, user_prompt: str) -> List[Dict[str, str]]:
msgs: List[Dict[str, str]] = []
if policy.strip():
msgs.append({"role": "system", "content": policy.strip()})
msgs.append({"role": "user", "content": user_prompt})
return msgs
def _extract_assistant_content(outputs) -> str:
"""Extract the assistant's content from the known shape:
outputs = [
{
'generated_text': [
{'role': 'system', 'content': ...},
{'role': 'user', 'content': ...},
{'role': 'assistant', 'content': 'analysis...assistantfinal...'}
]
}
]
Keep this forgiving and minimal.
"""
try:
msgs = outputs[0]["generated_text"]
for m in reversed(msgs):
if isinstance(m, dict) and m.get("role") == "assistant":
return m.get("content", "")
last = msgs[-1]
return last.get("content", "") if isinstance(last, dict) else str(last)
except Exception:
return str(outputs)
def _parse_harmony_output_from_string(s: str) -> Tuple[str, str]:
"""Split a Harmony-style concatenated string into (analysis, final).
Expects markers 'analysis' ... 'assistantfinal'.
No heavy parsing — just string finds.
"""
if not isinstance(s, str):
s = str(s)
final_key = "assistantfinal"
j = s.find(final_key)
if j != -1:
final_text = s[j + len(final_key):].strip()
i = s.find("analysis")
if i != -1 and i < j:
analysis_text = s[i + len("analysis"): j].strip()
else:
analysis_text = s[:j].strip()
return analysis_text, final_text
# no explicit final marker
if s.startswith("analysis"):
return s[len("analysis"):].strip(), ""
return "", s.strip()
# ----------------------------
# Inference
# ----------------------------
@spaces.GPU(duration=ZGPU_DURATION)
def generate_long_prompt(
policy: str,
prompt: str,
max_new_tokens: int,
temperature: float,
top_p: float,
repetition_penalty: float,
) -> Tuple[str, str, str]:
global _pipe
start = time.time()
if _pipe is None:
_pipe = pipeline(
task="text-generation",
model=MODEL_ID,
torch_dtype="auto",
device_map="auto",
)
messages = _to_messages(policy, prompt)
outputs = _pipe(
messages,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
assistant_str = _extract_assistant_content(outputs)
analysis_text, final_text = _parse_harmony_output_from_string(assistant_str)
elapsed = time.time() - start
meta = f"Model: {MODEL_ID} | Time: {elapsed:.1f}s | max_new_tokens={max_new_tokens}"
return analysis_text or "(No analysis)", final_text or "(No answer)", meta
# ----------------------------
# UI
# ----------------------------
CUSTOM_CSS = "/** Pretty but simple **/\n:root { --radius: 14px; }\n.gradio-container { font-family: ui-sans-serif, system-ui, Inter, Roboto, Arial; }\n#hdr h1 { font-weight: 700; letter-spacing: -0.02em; }\ntextarea { font-family: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', monospace; }\nfooter { display:none; }\n"
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="hdr"):
gr.Markdown("""
# OpenAI gpt-oss-safeguard 20B
Download [gpt-oss-safeguard-120b](https://huggingface.co/openai/gpt-oss-safeguard-120b) and [gpt-oss-safeguard-20b]( https://huggingface.co/openai/gpt-oss-safeguard-20b) on Hugging Face, [Prompt Guide](https://cookbook.openai.com/articles/gpt-oss-safeguard-guide), and [OpenAI Blog]().
Provide a **Policy** and a **Prompt**.
""")
with gr.Row():
with gr.Column(scale=1, min_width=380):
policy = gr.Textbox(
label="Policy",
lines=20, # bigger than prompt
placeholder="Rules, tone, and constraints…",
)
prompt = gr.Textbox(
label="Prompt",
lines=5,
placeholder="Your request…",
)
with gr.Accordion("Advanced settings", open=False):
max_new_tokens = gr.Slider(16, 4096, value=DEFAULT_MAX_NEW_TOKENS, step=8, label="max_new_tokens")
temperature = gr.Slider(0.0, 1.5, value=DEFAULT_TEMPERATURE, step=0.05, label="temperature")
top_p = gr.Slider(0.0, 1.0, value=DEFAULT_TOP_P, step=0.01, label="top_p")
repetition_penalty = gr.Slider(0.8, 2.0, value=DEFAULT_REPETITION_PENALTY, step=0.05, label="repetition_penalty")
with gr.Row():
btn = gr.Button("Generate", variant="primary")
clr = gr.Button("Clear", variant="secondary")
with gr.Column(scale=1, min_width=380):
analysis = gr.Textbox(label="Analysis", lines=12)
answer = gr.Textbox(label="Answer", lines=12)
meta = gr.Markdown()
btn.click(
fn=generate_long_prompt,
inputs=[policy, prompt, max_new_tokens, temperature, top_p, repetition_penalty],
outputs=[analysis, answer, meta],
concurrency_limit=1,
api_name="generate",
)
def _clear():
return "", "", "", ""
clr.click(_clear, outputs=[policy, prompt, analysis, answer])
gr.Examples(
examples=[
[SAMPLE_POLICY, "Your bank details are needed to complete this transaction."],
[SAMPLE_POLICY, "NOW IS THE TIME TO CUT THE CORD AND JOIN. Where else will you get THE BEST that TV can offer for HALF the price?"],
[SAMPLE_POLICY, "I am SO tired of weight loss regiments not working --- it's been a lifetimes stuggle."],
[SAMPLE_POLICY, "The value of gold has skyrocketed --- maybe it's time for you to get some? "],
],
inputs=[policy, prompt],
)
if __name__ == "__main__":
demo.queue(max_size=32).launch()