Spaces:
Running
on
Zero
Running
on
Zero
streaming (#22)
Browse files- feat: streaming for analysis and answer (7579caaf8a844b420fe864d14f30b04efd1e63bf)
app.py
CHANGED
|
@@ -1,10 +1,15 @@
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import time
|
| 3 |
from typing import List, Dict, Tuple
|
|
|
|
| 4 |
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
-
from transformers import
|
| 7 |
-
|
| 8 |
|
| 9 |
# === Config (override via Space secrets/env vars) ===
|
| 10 |
MODEL_ID = os.environ.get("MODEL_ID", "openai/gpt-oss-safeguard-20b")
|
|
@@ -14,6 +19,8 @@ DEFAULT_TOP_P = float(os.environ.get("TOP_P", 1.0))
|
|
| 14 |
DEFAULT_REPETITION_PENALTY = float(os.environ.get("REPETITION_PENALTY", 1.0))
|
| 15 |
ZGPU_DURATION = int(os.environ.get("ZGPU_DURATION", 120)) # seconds
|
| 16 |
|
|
|
|
|
|
|
| 17 |
SAMPLE_POLICY = """
|
| 18 |
Spam Policy (#SP)
|
| 19 |
GOAL: Identify spam. Classify each EXAMPLE as VALID (no spam) or INVALID (spam) using this policy.
|
|
@@ -123,13 +130,38 @@ If financial harm or fraud → classify SP4.
|
|
| 123 |
If combined with other indicators of abuse, violence, or illicit behavior, apply highest severity policy.
|
| 124 |
"""
|
| 125 |
|
| 126 |
-
|
|
|
|
|
|
|
| 127 |
|
| 128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
# ----------------------------
|
| 130 |
# Helpers (simple & explicit)
|
| 131 |
# ----------------------------
|
| 132 |
|
|
|
|
| 133 |
def _to_messages(policy: str, user_prompt: str) -> List[Dict[str, str]]:
|
| 134 |
msgs: List[Dict[str, str]] = []
|
| 135 |
if policy.strip():
|
|
@@ -138,94 +170,71 @@ def _to_messages(policy: str, user_prompt: str) -> List[Dict[str, str]]:
|
|
| 138 |
return msgs
|
| 139 |
|
| 140 |
|
| 141 |
-
def _extract_assistant_content(outputs) -> str:
|
| 142 |
-
"""Extract the assistant's content from the known shape:
|
| 143 |
-
outputs = [
|
| 144 |
-
{
|
| 145 |
-
'generated_text': [
|
| 146 |
-
{'role': 'system', 'content': ...},
|
| 147 |
-
{'role': 'user', 'content': ...},
|
| 148 |
-
{'role': 'assistant', 'content': 'analysis...assistantfinal...'}
|
| 149 |
-
]
|
| 150 |
-
}
|
| 151 |
-
]
|
| 152 |
-
Keep this forgiving and minimal.
|
| 153 |
-
"""
|
| 154 |
-
try:
|
| 155 |
-
msgs = outputs[0]["generated_text"]
|
| 156 |
-
for m in reversed(msgs):
|
| 157 |
-
if isinstance(m, dict) and m.get("role") == "assistant":
|
| 158 |
-
return m.get("content", "")
|
| 159 |
-
last = msgs[-1]
|
| 160 |
-
return last.get("content", "") if isinstance(last, dict) else str(last)
|
| 161 |
-
except Exception:
|
| 162 |
-
return str(outputs)
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
def _parse_harmony_output_from_string(s: str) -> Tuple[str, str]:
|
| 166 |
-
"""Split a Harmony-style concatenated string into (analysis, final).
|
| 167 |
-
Expects markers 'analysis' ... 'assistantfinal'.
|
| 168 |
-
No heavy parsing — just string finds.
|
| 169 |
-
"""
|
| 170 |
-
if not isinstance(s, str):
|
| 171 |
-
s = str(s)
|
| 172 |
-
final_key = "assistantfinal"
|
| 173 |
-
j = s.find(final_key)
|
| 174 |
-
if j != -1:
|
| 175 |
-
final_text = s[j + len(final_key):].strip()
|
| 176 |
-
i = s.find("analysis")
|
| 177 |
-
if i != -1 and i < j:
|
| 178 |
-
analysis_text = s[i + len("analysis"): j].strip()
|
| 179 |
-
else:
|
| 180 |
-
analysis_text = s[:j].strip()
|
| 181 |
-
return analysis_text, final_text
|
| 182 |
-
# no explicit final marker
|
| 183 |
-
if s.startswith("analysis"):
|
| 184 |
-
return s[len("analysis"):].strip(), ""
|
| 185 |
-
return "", s.strip()
|
| 186 |
-
|
| 187 |
-
|
| 188 |
# ----------------------------
|
| 189 |
# Inference
|
| 190 |
# ----------------------------
|
| 191 |
|
| 192 |
@spaces.GPU(duration=ZGPU_DURATION)
|
| 193 |
-
def
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
) -> Tuple[str, str, str]:
|
| 201 |
-
global _pipe
|
| 202 |
-
start = time.time()
|
| 203 |
|
| 204 |
-
|
| 205 |
-
_pipe = pipeline(
|
| 206 |
-
task="text-generation",
|
| 207 |
-
model=MODEL_ID,
|
| 208 |
-
torch_dtype="auto",
|
| 209 |
-
device_map="auto",
|
| 210 |
-
)
|
| 211 |
|
| 212 |
messages = _to_messages(policy, prompt)
|
| 213 |
|
| 214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
messages,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
max_new_tokens=max_new_tokens,
|
| 217 |
-
do_sample=
|
| 218 |
-
temperature=temperature,
|
| 219 |
top_p=top_p,
|
| 220 |
-
|
|
|
|
|
|
|
| 221 |
)
|
| 222 |
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
|
| 231 |
# ----------------------------
|
|
@@ -269,7 +278,7 @@ with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft()) as demo:
|
|
| 269 |
meta = gr.Markdown()
|
| 270 |
|
| 271 |
btn.click(
|
| 272 |
-
fn=
|
| 273 |
inputs=[policy, prompt, max_new_tokens, temperature, top_p, repetition_penalty],
|
| 274 |
outputs=[analysis, answer, meta],
|
| 275 |
concurrency_limit=1,
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
|
| 3 |
import os
|
| 4 |
+
import re
|
| 5 |
import time
|
| 6 |
from typing import List, Dict, Tuple
|
| 7 |
+
import threading
|
| 8 |
|
| 9 |
+
import torch
|
| 10 |
import gradio as gr
|
| 11 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
| 12 |
+
|
| 13 |
|
| 14 |
# === Config (override via Space secrets/env vars) ===
|
| 15 |
MODEL_ID = os.environ.get("MODEL_ID", "openai/gpt-oss-safeguard-20b")
|
|
|
|
| 19 |
DEFAULT_REPETITION_PENALTY = float(os.environ.get("REPETITION_PENALTY", 1.0))
|
| 20 |
ZGPU_DURATION = int(os.environ.get("ZGPU_DURATION", 120)) # seconds
|
| 21 |
|
| 22 |
+
ANALYSIS_PATTERN = analysis_match = re.compile(r'^(.*)assistantfinal', flags=re.DOTALL)
|
| 23 |
+
|
| 24 |
SAMPLE_POLICY = """
|
| 25 |
Spam Policy (#SP)
|
| 26 |
GOAL: Identify spam. Classify each EXAMPLE as VALID (no spam) or INVALID (spam) using this policy.
|
|
|
|
| 130 |
If combined with other indicators of abuse, violence, or illicit behavior, apply highest severity policy.
|
| 131 |
"""
|
| 132 |
|
| 133 |
+
_tokenizer = None
|
| 134 |
+
_model = None
|
| 135 |
+
_device = None
|
| 136 |
|
| 137 |
|
| 138 |
+
def _ensure_loaded():
|
| 139 |
+
print("Loading model and tokenizer")
|
| 140 |
+
global _tokenizer, _model, _device
|
| 141 |
+
if _tokenizer is not None and _model is not None:
|
| 142 |
+
return
|
| 143 |
+
_tokenizer = AutoTokenizer.from_pretrained(
|
| 144 |
+
MODEL_ID, trust_remote_code=True
|
| 145 |
+
)
|
| 146 |
+
_model = AutoModelForCausalLM.from_pretrained(
|
| 147 |
+
MODEL_ID,
|
| 148 |
+
trust_remote_code=True,
|
| 149 |
+
# torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 150 |
+
low_cpu_mem_usage=True,
|
| 151 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
| 152 |
+
)
|
| 153 |
+
if _tokenizer.pad_token_id is None and _tokenizer.eos_token_id is not None:
|
| 154 |
+
_tokenizer.pad_token = _tokenizer.eos_token
|
| 155 |
+
_model.eval()
|
| 156 |
+
_device = next(_model.parameters()).device
|
| 157 |
+
|
| 158 |
+
_ensure_loaded()
|
| 159 |
+
|
| 160 |
# ----------------------------
|
| 161 |
# Helpers (simple & explicit)
|
| 162 |
# ----------------------------
|
| 163 |
|
| 164 |
+
|
| 165 |
def _to_messages(policy: str, user_prompt: str) -> List[Dict[str, str]]:
|
| 166 |
msgs: List[Dict[str, str]] = []
|
| 167 |
if policy.strip():
|
|
|
|
| 170 |
return msgs
|
| 171 |
|
| 172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
# ----------------------------
|
| 174 |
# Inference
|
| 175 |
# ----------------------------
|
| 176 |
|
| 177 |
@spaces.GPU(duration=ZGPU_DURATION)
|
| 178 |
+
def generate_stream(
|
| 179 |
+
policy: str,
|
| 180 |
+
prompt: str,
|
| 181 |
+
max_new_tokens: int,
|
| 182 |
+
temperature: float,
|
| 183 |
+
top_p: float,
|
| 184 |
+
repetition_penalty: float,
|
| 185 |
) -> Tuple[str, str, str]:
|
|
|
|
|
|
|
| 186 |
|
| 187 |
+
start = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
messages = _to_messages(policy, prompt)
|
| 190 |
|
| 191 |
+
streamer = TextIteratorStreamer(
|
| 192 |
+
_tokenizer,
|
| 193 |
+
skip_special_tokens=True,
|
| 194 |
+
skip_prompt=True, # <-- key fix
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
inputs = _tokenizer.apply_chat_template(
|
| 198 |
messages,
|
| 199 |
+
return_tensors="pt",
|
| 200 |
+
add_generation_prompt=True,
|
| 201 |
+
)
|
| 202 |
+
input_ids = inputs["input_ids"] if isinstance(inputs, dict) else inputs
|
| 203 |
+
input_ids = input_ids.to(_device)
|
| 204 |
+
|
| 205 |
+
gen_kwargs = dict(
|
| 206 |
+
input_ids=input_ids,
|
| 207 |
max_new_tokens=max_new_tokens,
|
| 208 |
+
do_sample=temperature > 0.0,
|
| 209 |
+
temperature=float(temperature),
|
| 210 |
top_p=top_p,
|
| 211 |
+
pad_token_id=_tokenizer.pad_token_id,
|
| 212 |
+
eos_token_id=_tokenizer.eos_token_id,
|
| 213 |
+
streamer=streamer,
|
| 214 |
)
|
| 215 |
|
| 216 |
+
thread = threading.Thread(target=_model.generate, kwargs=gen_kwargs)
|
| 217 |
+
thread.start()
|
| 218 |
+
|
| 219 |
+
analysis = ""
|
| 220 |
+
output = ""
|
| 221 |
+
for new_text in streamer:
|
| 222 |
+
output += new_text
|
| 223 |
+
if not analysis:
|
| 224 |
+
m = ANALYSIS_PATTERN.match(output)
|
| 225 |
+
if m:
|
| 226 |
+
analysis = re.sub(r'^analysis\s*', '', m.group(1))
|
| 227 |
+
output = ""
|
| 228 |
+
|
| 229 |
+
if not analysis:
|
| 230 |
+
analysis_text = re.sub(r'^analysis\s*', '', output)
|
| 231 |
+
final_text = None
|
| 232 |
+
else:
|
| 233 |
+
analysis_text = analysis
|
| 234 |
+
final_text = output
|
| 235 |
+
elapsed = time.time() - start
|
| 236 |
+
meta = f"Model: {MODEL_ID} | Time: {elapsed:.1f}s | max_new_tokens={max_new_tokens}"
|
| 237 |
+
yield analysis_text or "(No analysis)", final_text or "(No answer)", meta
|
| 238 |
|
| 239 |
|
| 240 |
# ----------------------------
|
|
|
|
| 278 |
meta = gr.Markdown()
|
| 279 |
|
| 280 |
btn.click(
|
| 281 |
+
fn=generate_stream,
|
| 282 |
inputs=[policy, prompt, max_new_tokens, temperature, top_p, repetition_penalty],
|
| 283 |
outputs=[analysis, answer, meta],
|
| 284 |
concurrency_limit=1,
|