Spaces:
Build error
Build error
File size: 9,303 Bytes
97d9cf5 7149349 97d9cf5 7149349 97d9cf5 218ac8e 97d9cf5 81a66fd 97d9cf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
# MiniCPM-4.1-8B-Eagle3
from pathlib import Path
import time
import logging
import gradio as gr
import torch
import spaces
import threading
from transformers import AutoTokenizer, TextIteratorStreamer
# 导入模型相关模块
from eagle.model.ea_model import EaModel
from utils_chatbot import organize_messages, stream2display_text, mtp_new_tokens
# 日志配置
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# 全局模型实例
global_model = None
# 全局模型缓存(在GPU进程中)
_gpu_model_cache = None
# 全局模型配置
model_config = dict(
base_model_path = "openbmb/MiniCPM4.1-8B",
ea_model_path = "openbmb/MiniCPM4.1-8B-Eagle3/MiniCPM4_1-8B-Eagle3-bf16",
total_token=40,
depth=3,
top_k=10,
threshold=1.0,
use_eagle3=True,
device_map = "cpu",
trust_remote_code=True,
)
# 提前加载 tokenizer
tokenizer = AutoTokenizer.from_pretrained(
"openbmb/MiniCPM4.1-8B",
use_fast=False,
device_map="cpu",
)
def _initialize_gpu_model():
"""在GPU进程中获取模型并移到GPU"""
global _gpu_model_cache
if _gpu_model_cache is None:
logger.info(f"在GPU进程中初始化模型")
_gpu_model_cache = EaModel.from_pretrained(**model_config)
logger.info(f"模型在CPU上初始化完成")
return _gpu_model_cache
@spaces.GPU(duration=42) # default is 60
def gpu_handler(inputs):
prompt_text = tokenizer.apply_chat_template(
inputs,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([prompt_text], return_tensors="pt")
inputs = {
"model_inputs": model_inputs,
"max_new_tokens": 65536,
"temperature": 0.6,
"top_p": 0.95,
"top_k": 50,
"max_length": 65536,
}
logger.info(f"向 GPU 搬运 global_model")
"""GPU推理处理器"""
model = _initialize_gpu_model()
cuda_inputs = dict(
input_ids=inputs["model_inputs"].input_ids.to("cuda"),
# attention_mask=inputs["model_inputs"].attention_mask.to("cuda"),
max_new_tokens=inputs["max_new_tokens"],
temperature=inputs["temperature"],
top_p=inputs["top_p"],
top_k=inputs["top_k"],
max_length=inputs["max_length"],
)
model.base_model.to("cuda")
model.ea_layer.to("cuda")
model.ea_layer.tree_mask_init.to("cuda")
logger.info(f"pass inputs to global_model")
output_ids = model.eagenerate(**cuda_inputs)
logger.info(f"got outputs from global_model.eagenerate")
new_text = tokenizer.decode(
output_ids[0][model_inputs.input_ids.shape[1]:],
skip_special_tokens=True,
)
return new_text
@spaces.GPU(duration=60) # default is 60
def gpu_handler_s(
inputs,
history,
temperature,
top_p,
use_eagle,
):
prompt_text = tokenizer.apply_chat_template(
inputs,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([prompt_text], return_tensors="pt")
inputs = {
"model_inputs": model_inputs,
"max_new_tokens": 4096,
"temperature": temperature,
"top_p": top_p,
"top_k": 50,
"max_length": 65536,
}
logger.info(f"向 GPU 搬运 global_model")
"""GPU推理处理器"""
model = _initialize_gpu_model()
cuda_inputs = dict(
input_ids=inputs["model_inputs"].input_ids.to("cuda"),
# attention_mask=inputs["model_inputs"].attention_mask.to("cuda"),
max_new_tokens=inputs["max_new_tokens"],
temperature=inputs["temperature"],
top_p=inputs["top_p"],
top_k=inputs["top_k"],
max_length=inputs["max_length"],
)
model.base_model.to("cuda")
model.ea_layer.to("cuda")
model.ea_layer.tree_mask_init.to("cuda")
logger.info(f"pass inputs to global_model")
yield "", history
stop_token_ids = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
gen_tk_count, existing_tk_count = 0, len(inputs["model_inputs"].input_ids[0])
stream_text, start_time = "", time.time()
generate_func = model.ea_generate if use_eagle else model.naive_generate
for output_ids in generate_func(**cuda_inputs):
# for output_ids in model.ea_generate(**cuda_inputs):
new_tokens, gen_tk_count = mtp_new_tokens(output_ids, gen_tk_count, existing_tk_count, stop_token_ids)
new_token_text = tokenizer.decode(new_tokens, skip_special_tokens=False)
logger.info(f"[MTP]'''{new_token_text}'''")
stream_text += new_token_text
token_per_sec = gen_tk_count / (time.time() - start_time)
display_text = stream2display_text(stream_text, token_per_sec)
history[-1] = (history[-1][0], display_text)
yield "", history
history[-1] = (history[-1][0], stream_text.replace("<|im_end|>", ""))
# 替换 history 为非 display 形态的 text
class Model:
"""模型封装类,不持有实际模型对象"""
def __init__(self):
logger.info(f"创建封装类")
def handler(self, inputs):
"""非流式推理处理器"""
return gpu_handler(inputs)
def stream_handler(self, inputs, history, **kwargs):
"""流式推理处理器"""
yield from gpu_handler_s(inputs, history, **kwargs)
def initialize_model():
"""初始化全局模型"""
global global_model, _gpu_model_cache
# 默认配置
logger.info(f"="*50)
logger.info(f"启动 MiniCPM-4.1-8B-Eagle3 Chatbot 服务")
logger.info(f"="*50)
# 创建模型封装类
global_model = Model()
# 在主进程中预加载模型到CPU(For faster 首次推理)
try:
logger.info("在主进程中预加载模型到 CPU...")
_gpu_model_cache = EaModel.from_pretrained(**model_config)
logger.info("模型在主进程CPU上预加载完成")
except Exception as e:
logger.warning(f"主进程预加载模型失败, 将在GPU进程中加载: {e}")
_gpu_model_cache = None
return global_model
def gen_response(message, history, temperature, top_p):
chat_msg_ls = organize_messages(message, history)
new_text = global_model.handler(chat_msg_ls)
history.append((message, new_text))
return "", history
def gen_response_stream(
message,
history,
temperature,
top_p,
use_eagle,
):
chat_msg_ls = organize_messages(message, history)
history.append((message, ""))
sampling_kwargs = dict(
temperature = temperature,
top_p = top_p,
use_eagle = use_eagle,
)
yield from global_model.stream_handler(chat_msg_ls, history, **sampling_kwargs)
def create_app():
assets_path = Path.cwd().absolute()/"assets"
gr.set_static_paths(paths=[assets_path])
logger.info(f"Static resource path: {assets_path}. READY.")
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="gray",
neutral_hue="slate",
font=[gr.themes.GoogleFont("Inter"), "Arial", "sans-serif"],
)
with gr.Blocks(
theme=theme,
css="""
.logo-container {
text-align: center;
margin: 0.5rem 0 1rem 0;
}
.logo-container img {
height: 96px;
width: auto;
max-width: 200px;
display: inline-block;
}
.input-box {
border: 1px solid #2f63b8;
border-radius: 8px;
}
""",
) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.HTML('<div class="logo-container"><img src="/gradio_api/file=assets/OpenBMB-MiniCPM.png" alt="MiniCPM Logo"></div>')
blank_1 = gr.HTML("<div style='height:1px;'></div>")
temperature = gr.Slider(minimum=0, maximum=1, value=0.9, step=0.05, label="Temperature", scale=1)
top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.01, label="Top-p", scale=1)
use_eagle = gr.Checkbox(label="Speculative Decoding", value=True)
blank_2 = gr.HTML("<div style='height:128px;'></div>")
clear = gr.Button("Clear History")
gr.Markdown(
"""
Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank">anycoder</a>
"""
)
with gr.Column(scale=4):
chatbot = gr.Chatbot(label="Chat History", placeholder="Input to start a new chat", height=500)
prompt = gr.Textbox(
label="Input Text",
placeholder="Type your message here...",
lines=1,
# submit_btn=True,
elem_classes=["input-box"], # 自定义 class 供 css 使用
)
prompt.submit(gen_response_stream, inputs=[prompt, chatbot, temperature, top_p, use_eagle], outputs=[prompt, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
return demo
if __name__ == "__main__":
# 初始化模型
initialize_model()
# 创建并启动应用
demo = create_app()
demo.launch()
|