Spaces:
Build error
Build error
| # coding=utf-8 | |
| # Copyright 2025 The OpenBMB Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ PyTorch MiniCPM model.""" | |
| """ Modified to support Eagle-3, marked by <mod> xxx </mod> """ | |
| import math | |
| import re | |
| import warnings | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
| from transformers.activations import ACT2FN | |
| from transformers.cache_utils import Cache, DynamicCache, CacheLayerMixin, DynamicLayer | |
| from transformers.modeling_attn_mask_utils import ( | |
| AttentionMaskConverter, | |
| _prepare_4d_attention_mask, | |
| _prepare_4d_causal_attention_mask, | |
| _prepare_4d_causal_attention_mask_for_sdpa, | |
| ) | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutputWithPast, | |
| CausalLMOutputWithPast, | |
| SequenceClassifierOutputWithPast, | |
| ) | |
| from transformers.modeling_utils import PreTrainedModel | |
| from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13 | |
| from transformers.utils import ( | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| is_flash_attn_greater_or_equal_2_10, | |
| logging, | |
| replace_return_docstrings, | |
| ) | |
| from transformers.utils.import_utils import is_torch_fx_available | |
| from .configuration_minicpm import MiniCPMConfig | |
| try: | |
| from flash_attn import flash_attn_func, flash_attn_varlen_func | |
| from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa | |
| from infllm_v2 import ( | |
| infllmv2_attn_stage1, | |
| infllmv2_attn_varlen_func, | |
| infllmv2_attn_with_kvcache, | |
| max_pooling_1d, | |
| max_pooling_1d_varlen | |
| ) | |
| except: | |
| pass | |
| from functools import lru_cache | |
| from .modeling_llama_kv import _make_causal_mask, _expand_mask # <mod> use eagle's impl </mod> | |
| def compressed_attention( | |
| q: torch.Tensor, | |
| k: torch.Tensor, | |
| v: torch.Tensor, | |
| kernel_size: int, | |
| kernel_stride: int, | |
| block_size: int, | |
| topk: int, | |
| cu_seqlens_q: torch.Tensor, | |
| cu_seqlens_k: torch.Tensor, | |
| max_seqlen_q: int, | |
| max_seqlen_k: int, | |
| sm_scale: float = None, | |
| init_blocks: int = 1, | |
| local_blocks: int = 2, | |
| cache_lens: torch.Tensor = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Attention between query and compressed key and value. Compute attention output and topk block idx used in topk_sparse_attention. | |
| Args: | |
| q (torch.Tensor): shape [total_q_len, num_q_heads, head_dim] | |
| k (torch.Tensor): shape [total_kv_len, num_kv_heads, head_dim] | |
| v (torch.Tensor): shape [total_kv_len, num_kv_heads, head_dim] | |
| kernel_size (int): kernel size in compress_key_value | |
| kernel_stride (int): stride of compress_key_value | |
| block_size (int): key value block size for topk sparse attention. | |
| topk (int): number of blocks for each query. | |
| cu_seqlens_q (torch.Tensor): shape [batch_size + 1], similar to cu_seqlens_q in flash_attn_func_varlen. | |
| cu_seqlens_k (torch.Tensor): shape [batch_size + 1], similar to cu_seqlens_k in flash_attn_func_varlen. | |
| max_seqlen_q (int): max q len of the batch. | |
| max_seqlen_k (int): max k len of the batch. | |
| sm_scale (float, optional): softmax scale. Defaults to None, means 1/sqrt(head_dim). | |
| init_blocks (int, optional): Number of init blocks for each query. Defaults to 1. | |
| local_blocks (int, optional): Number of local blocks for each query. Defaults to 2. | |
| cache_lens (torch.Tensor, optional): shape [batch_size], used to record the cache length of each query. Defaults to None. | |
| Returns: | |
| Tuple[torch.Tensor, torch.Tensor]: attention output and topk_idx used in topk_sparse_attention | |
| """ | |
| with torch.no_grad(): | |
| batch_size = cu_seqlens_q.shape[0] - 1 | |
| # Check if it's prefilling stage | |
| is_prefilling = cache_lens is None or (cache_lens == 0).all().item() | |
| # prefilling stage | |
| if is_prefilling: | |
| # Calculate q_idx for each query position in each batch | |
| cache_lens = torch.zeros(batch_size, dtype=torch.int32, device=q.device) | |
| q_idx = torch.cat([ | |
| (torch.arange(cu_seqlens_q[i + 1] - cu_seqlens_q[i], device=q.device) + | |
| max_seqlen_q - (cu_seqlens_q[i + 1] - cu_seqlens_q[i])) // block_size | |
| for i in range(batch_size) | |
| ], dim=0) # shape: [total_q_len] | |
| # decoding stage | |
| else: | |
| # Each batch has only one query (last position). Shape: [batch_size] = [total_q_len] in decoding | |
| q_idx = cache_lens // block_size | |
| # compute attention score | |
| score = infllmv2_attn_stage1( | |
| q.contiguous(), | |
| k.contiguous(), | |
| v.contiguous(), | |
| cu_seqlens_q=cu_seqlens_q, | |
| cu_seqlens_k=cu_seqlens_k, | |
| max_seqlen_q=max_seqlen_q, | |
| max_seqlen_k=max_seqlen_k, | |
| causal=is_prefilling) | |
| # Shape: [num_heads, total_q_len, num_blocks] | |
| score = score[:, :q_idx.shape[0], :] | |
| # Shape: [num_heads, total_q_len, num_blocks] | |
| block_score = max_pooling_1d_varlen( | |
| score.contiguous(), | |
| cu_seqlens_q, | |
| cu_seqlens_k, | |
| cache_lens, | |
| max_seqlen_q, | |
| max_seqlen_k, | |
| local_blocks=local_blocks, | |
| init_blocks=init_blocks, | |
| block_size=block_size, | |
| stride=kernel_stride) | |
| # get topk | |
| topk = min(topk, block_score.shape[-1]) | |
| topk_idx = block_score.topk(topk, dim=-1).indices.sort(-1).values | |
| topk_idx[topk_idx > q_idx[None, :, None]] = -1 | |
| topk_idx = topk_idx.to(torch.int32) | |
| return topk_idx | |
| def calc_chunks_with_stride(cu_seqlen, chunk_size, kernel_stride): | |
| """ | |
| Compute the chunks that require Sparse attention, with stride support. | |
| Args: | |
| cu_seqlen (torch.Tensor): Cumulative sequence lengths for each sample. | |
| chunk_size (int): Chunk size used for Sparse attention. | |
| kernel_stride (int): Stride size when sliding over the sequence. | |
| Returns: | |
| filtered_indices (torch.Tensor): Indices used to directly index into the key/value tensors. | |
| cu_seqlens_compressed (torch.Tensor): Cumulative sequence lengths after compression. | |
| """ | |
| # 1. Compute the length of each sequence | |
| batch_sizes = cu_seqlen[1:] - cu_seqlen[:-1] | |
| # 2. Compute the start positions of chunks for each sequence (with stride) | |
| max_seq_len = torch.max(batch_sizes) | |
| max_num_chunks_per_seq = (max_seq_len - chunk_size) // kernel_stride + 1 | |
| chunk_start_offsets = torch.arange(0, max_num_chunks_per_seq * kernel_stride, kernel_stride, device=cu_seqlen.device) | |
| seq_starts = cu_seqlen[:-1] | |
| chunk_start_in_seq = seq_starts[:, None] + chunk_start_offsets[None, :] # [batch_size, max_num_chunks_per_seq] | |
| # 3. Filter out chunks that exceed sequence length or are smaller than the full chunk size | |
| chunk_end_in_seq = chunk_start_in_seq + chunk_size | |
| valid_chunk_mask = (chunk_end_in_seq <= (seq_starts[:, None] + batch_sizes[:, None])) | |
| # 4. Filter valid chunk start positions using the valid_chunk_mask | |
| valid_chunk_starts = chunk_start_in_seq[valid_chunk_mask] # [num_valid_chunks] | |
| del chunk_start_in_seq | |
| # 5. Generate filtered_indices | |
| chunk_indices = torch.arange( | |
| 0, chunk_size, device=cu_seqlen.device | |
| )[None, :] # [1, chunk_size] | |
| filtered_indices = valid_chunk_starts[:, None] + chunk_indices # [num_valid_chunks, chunk_size] | |
| filtered_indices = filtered_indices.view(-1) # Flatten to 1D indices | |
| # 6. Compute compressed cumulative sequence lengths | |
| num_filtered_chunks_per_batch = valid_chunk_mask.sum(dim=1) # Number of valid chunks per batch | |
| cu_seqlens_compressed = torch.zeros( | |
| len(cu_seqlen), dtype=torch.int32, device=cu_seqlen.device | |
| ) | |
| cu_seqlens_compressed[1:] = num_filtered_chunks_per_batch.cumsum(dim=0) | |
| del num_filtered_chunks_per_batch, chunk_start_offsets, seq_starts, chunk_end_in_seq, valid_chunk_mask, chunk_indices | |
| return filtered_indices, cu_seqlens_compressed | |
| class CompressK(torch.nn.Module): | |
| def __init__(self, head_num_k, head_dim, kernel_size, kernel_stride=16): | |
| """ | |
| Module for compressing key (K) representations. | |
| Args: | |
| head_num_k (int): Number of key attention heads. | |
| head_dim (int): Dimension of each attention head. | |
| kernel_size (int): Size of each chunk used for compression. | |
| kernel_stride (int, optional): Stride used when dividing input into chunks. Default is 16. | |
| """ | |
| super().__init__() | |
| self.kernel_size = kernel_size | |
| self.head_num_k = head_num_k | |
| self.head_dim = head_dim | |
| self.kernel_stride = kernel_stride | |
| def forward(self, k: torch.Tensor, cu_seqlens): | |
| """ | |
| Forward pass for compressing the key (K) tensor. | |
| Args: | |
| k (torch.Tensor): Input key tensor of shape (total_seq_len, num_heads, head_dim). | |
| cu_seqlens (torch.Tensor): Cumulative sequence lengths for each sample in the batch, typically used for handling variable-length sequences. | |
| Returns: | |
| compress_k (torch.Tensor): Compressed key tensor. | |
| cu_seqlens_compressed (torch.Tensor): Updated cumulative sequence lengths after compression. | |
| """ | |
| # Compute chunk-related metadata, with stride support | |
| filtered_k_indices, cu_seqlens_compressed = calc_chunks_with_stride( | |
| cu_seqlens, self.kernel_size, self.kernel_stride | |
| ) | |
| # Extract filtered key vectors | |
| filtered_k = k.index_select(0, filtered_k_indices.view(-1)) | |
| # split | |
| filtered_k = filtered_k.view(filtered_k.shape[0] // self.kernel_size, self.kernel_size, self.head_num_k, self.head_dim) # [l, block_size,h,d] | |
| compressed_k = filtered_k.mean(dim=1) | |
| return compressed_k, cu_seqlens_compressed | |
| class InfLLMv2CacheLayer(DynamicLayer): | |
| def __init__(self): | |
| super().__init__() | |
| # Initialize any additional attributes specific to InfLLMv2CacheLayer | |
| self.no_rope_keys = torch.tensor([], dtype=torch.float32) | |
| self.compress_k_cache = [] | |
| self.no_compress_k_cache = [] | |
| self.cached_compressed_cu_seqlens = torch.tensor([], dtype=torch.int32) | |
| self.compress_k_cache_varlen = torch.tensor([], dtype=torch.float32) | |
| def update_no_rope_key(self, key_states): | |
| if self.no_rope_keys.numel() == 0: | |
| self.no_rope_keys = key_states | |
| else: | |
| self.no_rope_keys = torch.cat([self.no_rope_keys, key_states], dim=1) | |
| return self.no_rope_keys | |
| def update_compress_k(self, key_states, cu_seqlens=None): | |
| if len(self.compress_k_cache) == 0: | |
| if cu_seqlens is not None: | |
| self.cached_compressed_cu_seqlens = cu_seqlens.clone() | |
| self.compress_k_cache_varlen = key_states | |
| split_sizes = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist() | |
| self.compress_k_cache = list(torch.split(key_states, split_sizes)) | |
| else: | |
| for index, k in enumerate(key_states): | |
| if k is not None: | |
| self.compress_k_cache[index] = torch.cat([self.compress_k_cache[index], k], dim=0) | |
| new_seq_lens = torch.tensor([tensor.shape[0] for tensor in self.compress_k_cache], dtype=torch.int32) | |
| new_cumsum = torch.cumsum(new_seq_lens, dim=0, dtype=torch.int32) | |
| self.compress_k_cache_varlen = torch.cat(self.compress_k_cache, dim=0) | |
| self.cached_compressed_cu_seqlens = torch.cat([torch.tensor([0], dtype=torch.int32), new_cumsum]).to(self.compress_k_cache_varlen.device) | |
| return self.compress_k_cache_varlen, self.cached_compressed_cu_seqlens | |
| def update_no_compress_k(self, key_states, kernel_size=32, kernel_stride=16): | |
| k_chunk_list = [] | |
| for index, k in enumerate(key_states): | |
| if len(self.no_compress_k_cache) <= index: | |
| self.no_compress_k_cache.append(k) | |
| else: | |
| self.no_compress_k_cache[index] = torch.cat([self.no_compress_k_cache[index], k], dim=0) | |
| current_len = self.no_compress_k_cache[index].shape[0] | |
| if current_len >= kernel_size: | |
| k_chunk_list.append(self.no_compress_k_cache[index][:kernel_size]) | |
| self.no_compress_k_cache[index] = self.no_compress_k_cache[index][kernel_stride:] | |
| else: | |
| k_chunk_list.append(None) | |
| return k_chunk_list | |
| class InfLLMv2Cache(DynamicCache): | |
| def __init__(self, | |
| config,num_hidden_layers: Optional[int] = None) -> None: | |
| super().__init__(config=config) | |
| self.layers = [InfLLMv2CacheLayer() for _ in range(num_hidden_layers)] if num_hidden_layers else [] | |
| self._seen_tokens = 0 | |
| def update(self, key_states, value_states, layer_idx, cache_kwargs=None): | |
| if layer_idx == 0: | |
| self._seen_tokens += key_states.shape[-2] | |
| return self.layers[layer_idx].update(key_states, value_states, cache_kwargs) | |
| def update_no_rope_key(self, key_states, layer_idx, cache_kwargs=None): | |
| return self.layers[layer_idx].update_no_rope_key(key_states) | |
| def update_compress_k(self, key_states, layer_idx, cu_seqlens=None, cache_kwargs=None): | |
| return self.layers[layer_idx].update_compress_k(key_states, cu_seqlens) | |
| def update_no_compress_k(self, key_states, layer_idx, kernel_size=32, kernel_stride=16, cache_kwargs=None): | |
| return self.layers[layer_idx].update_no_compress_k(key_states, kernel_size, kernel_stride) | |
| def crop(self, max_length): | |
| for layer in self.layers: | |
| layer.crop(max_length) | |
| def batch_repeat_interleave(self, repeats): | |
| for layer in self.layers: | |
| layer.batch_repeat_interleave(repeats) | |
| def batch_select_indices(self, indices): | |
| for layer in self.layers: | |
| layer.batch_select_indices(indices) | |
| # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph. | |
| # It means that the function will not be traced through and simply appear as a node in the graph. | |
| if is_torch_fx_available(): | |
| if not is_torch_greater_or_equal_than_1_13: | |
| import torch.fx | |
| _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) | |
| logger = logging.get_logger(__name__) | |
| _CONFIG_FOR_DOC = 'MiniCPMConfig' | |
| def _get_unpad_data(attention_mask): | |
| seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
| indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
| max_seqlen_in_batch = seqlens_in_batch.max().item() | |
| cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) | |
| return ( | |
| indices, | |
| cu_seqlens, | |
| max_seqlen_in_batch, | |
| ) | |
| # @torch.jit.script # type: ignore | |
| def rms_layernorm(hidden: torch.Tensor, weight: torch.Tensor, eps: float): | |
| old_dtype = hidden.dtype | |
| variance = hidden.to(torch.float32).pow(2).mean(dim=-1, keepdim=True) | |
| hidden = (hidden * torch.rsqrt(variance + eps)).to(old_dtype) | |
| return hidden * weight | |
| class MiniCPMRMSNorm(nn.Module): | |
| def __init__(self, hidden_size, eps=1e-6): | |
| """ | |
| MiniCPMRMSNorm is equivalent to T5LayerNorm | |
| """ | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(hidden_size)) | |
| self.variance_epsilon = eps | |
| def forward(self, hidden_states): | |
| return rms_layernorm(hidden_states, self.weight, self.variance_epsilon) | |
| ALL_LAYERNORM_LAYERS.append(MiniCPMRMSNorm) | |
| class MiniCPMRotaryEmbedding(nn.Module): | |
| def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | |
| super().__init__() | |
| self.dim = dim | |
| self.max_position_embeddings = max_position_embeddings | |
| self.base = base | |
| inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | |
| self.register_buffer('inv_freq', inv_freq, persistent=False) | |
| # Build here to make `torch.jit.trace` work. | |
| self._set_cos_sin_cache( | |
| # seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() | |
| seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32 | |
| ) | |
| def _set_cos_sin_cache(self, seq_len, device, dtype): | |
| self.max_seq_len_cached = seq_len | |
| t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
| freqs = torch.outer(t, self.inv_freq) | |
| # Different from paper, but it uses a different permutation in order to obtain the same calculation | |
| emb = torch.cat((freqs, freqs), dim=-1) | |
| self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False) | |
| self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False) | |
| def forward(self, x, seq_len=None): | |
| # x: [bs, num_attention_heads, seq_len, head_size] | |
| if seq_len > self.max_seq_len_cached: | |
| self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | |
| # <mod> tensor shape diff | |
| # return ( | |
| # self.cos_cached[:seq_len].to(dtype=x.dtype), | |
| # self.sin_cached[:seq_len].to(dtype=x.dtype), | |
| # ) | |
| # <before-after-mod> ------------------------------------------------- | |
| return ( | |
| self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), | |
| self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), | |
| ) | |
| # </mod> | |
| class MiniCPMLongRoPE(MiniCPMRotaryEmbedding): | |
| """MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" | |
| def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, short_factor=None, long_factor=None, original_max_position_embeddings=None): | |
| self.short_factor = short_factor | |
| self.long_factor = long_factor | |
| self.original_max_position_embeddings = original_max_position_embeddings | |
| scale = (max_position_embeddings / self.original_max_position_embeddings) | |
| self.scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings)) | |
| super().__init__(dim, max_position_embeddings, base, device) | |
| def _set_cos_sin_cache(self, seq_len, device, dtype): | |
| self.max_seq_len_cached = seq_len | |
| t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
| if seq_len > self.original_max_position_embeddings: | |
| ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=device) | |
| else: | |
| ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=device) | |
| freqs = torch.mul( | |
| torch.outer(t, 1.0 / ext_factors).to(device=device), | |
| self.inv_freq.to(device=device).to(dtype) | |
| ) | |
| # Different from paper, but it uses a different permutation in order to obtain the same calculation | |
| emb = torch.cat((freqs, freqs), dim=-1) | |
| # <mod> tensor shape diff | |
| # self.register_buffer('cos_cached', emb.cos().to(dtype) * self.scaling_factor, persistent=False) | |
| # self.register_buffer('sin_cached', emb.sin().to(dtype) * self.scaling_factor, persistent=False) | |
| # <before-after-mod> ------------------------------------------------- | |
| self.register_buffer( | |
| "cos_cached", emb.cos()[None, None, :, :].to(dtype) * self.scaling_factor, persistent=False | |
| ) | |
| self.register_buffer( | |
| "sin_cached", emb.sin()[None, None, :, :].to(dtype) * self.scaling_factor, persistent=False | |
| ) | |
| # </mod> | |
| class MiniCPMLinearScalingRotaryEmbedding(MiniCPMRotaryEmbedding): | |
| """MiniCPMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" | |
| def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): | |
| self.scaling_factor = scaling_factor | |
| super().__init__(dim, max_position_embeddings, base, device) | |
| def _set_cos_sin_cache(self, seq_len, device, dtype): | |
| self.max_seq_len_cached = seq_len | |
| t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
| t = t / self.scaling_factor | |
| freqs = torch.outer(t, self.inv_freq) | |
| # Different from paper, but it uses a different permutation in order to obtain the same calculation | |
| emb = torch.cat((freqs, freqs), dim=-1) | |
| # <mod> tensor shape diff | |
| # self.register_buffer('cos_cached', emb.cos().to(dtype) * self.scaling_factor, persistent=False) | |
| # self.register_buffer('sin_cached', emb.sin().to(dtype) * self.scaling_factor, persistent=False) | |
| # <before-after-mod> ------------------------------------------------- | |
| self.register_buffer( | |
| "cos_cached", emb.cos()[None, None, :, :].to(dtype) * self.scaling_factor, persistent=False | |
| ) | |
| self.register_buffer( | |
| "sin_cached", emb.sin()[None, None, :, :].to(dtype) * self.scaling_factor, persistent=False | |
| ) | |
| # </mod> | |
| class MiniCPMDynamicNTKScalingRotaryEmbedding(MiniCPMRotaryEmbedding): | |
| """MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" | |
| def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): | |
| self.scaling_factor = scaling_factor | |
| super().__init__(dim, max_position_embeddings, base, device) | |
| def _set_cos_sin_cache(self, seq_len, device, dtype): | |
| self.max_seq_len_cached = seq_len | |
| if seq_len > self.max_position_embeddings: | |
| base = self.base * ( | |
| (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) | |
| ) ** (self.dim / (self.dim - 2)) | |
| inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | |
| self.register_buffer('inv_freq', inv_freq, persistent=False) | |
| t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
| freqs = torch.outer(t, self.inv_freq) | |
| # Different from paper, but it uses a different permutation in order to obtain the same calculation | |
| emb = torch.cat((freqs, freqs), dim=-1) | |
| # <mod> tensor shape diff | |
| # self.register_buffer('cos_cached', emb.cos().to(dtype) * self.scaling_factor, persistent=False) | |
| # self.register_buffer('sin_cached', emb.sin().to(dtype) * self.scaling_factor, persistent=False) | |
| # <before-after-mod> ------------------------------------------------- | |
| self.register_buffer( | |
| "cos_cached", emb.cos()[None, None, :, :].to(dtype) * self.scaling_factor, persistent=False | |
| ) | |
| self.register_buffer( | |
| "sin_cached", emb.sin()[None, None, :, :].to(dtype) * self.scaling_factor, persistent=False | |
| ) | |
| # </mod> | |
| def rotate_half(x): | |
| """Rotates half the hidden dims of the input.""" | |
| x1 = x[..., : x.shape[-1] // 2] | |
| x2 = x[..., x.shape[-1] // 2:] | |
| return torch.cat((-x2, x1), dim=-1) | |
| def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): | |
| """Applies Rotary Position Embedding to the query and key tensors. | |
| Args: | |
| q (`torch.Tensor`): The query tensor. | |
| k (`torch.Tensor`): The key tensor. | |
| cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
| sin (`torch.Tensor`): The sine part of the rotary embedding. | |
| position_ids (`torch.Tensor`): | |
| The position indices of the tokens corresponding to the query and key tensors. For example, this can be | |
| used to pass offsetted position ids when working with a KV-cache. | |
| unsqueeze_dim (`int`, *optional*, defaults to 1): | |
| The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
| sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
| that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
| k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
| cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
| the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
| Returns: | |
| `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
| """ | |
| # cos = cos[position_ids].unsqueeze(unsqueeze_dim) | |
| # sin = sin[position_ids].unsqueeze(unsqueeze_dim) | |
| # q_embed = (q * cos) + (rotate_half(q) * sin) | |
| # k_embed = (k * cos) + (rotate_half(k) * sin) | |
| cos = cos.squeeze(1).squeeze(0) | |
| sin = sin.squeeze(1).squeeze(0) | |
| orig_dtype = k.dtype | |
| cos = cos[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim] | |
| sin = sin[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim] | |
| q_fp32 = q.to(dtype=torch.float32, device=q.device) | |
| k_fp32 = k.to(dtype=torch.float32, device=k.device) | |
| q_embed = (q_fp32 * cos) + (rotate_half(q_fp32) * sin) | |
| k_embed = (k_fp32 * cos) + (rotate_half(k_fp32) * sin) | |
| return q_embed.to(dtype=orig_dtype), k_embed.to(dtype=orig_dtype) | |
| class MiniCPMMLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.hidden_size = config.hidden_size | |
| self.intermediate_size = config.intermediate_size | |
| self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
| self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
| self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | |
| self.act_fn = ACT2FN[config.hidden_act] | |
| def forward(self, x): | |
| if self.config.pretraining_tp > 1: | |
| slice = self.intermediate_size // self.config.pretraining_tp | |
| gate_proj_slices = self.gate_proj.weight.split(slice, dim=0) | |
| up_proj_slices = self.up_proj.weight.split(slice, dim=0) | |
| down_proj_slices = self.down_proj.weight.split(slice, dim=1) | |
| gate_proj = torch.cat( | |
| [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1 | |
| ) | |
| up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1) | |
| intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2) | |
| down_proj = [ | |
| F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp) | |
| ] | |
| down_proj = sum(down_proj) | |
| else: | |
| down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
| return down_proj | |
| def _unpad_one_tensor(hidden_states, attention_mask): | |
| # Unpad the hidden states using the indices | |
| indices, cu_seqlens, max_seqlen_in_batch = _get_unpad_data(attention_mask) | |
| batch_size, seq_len = hidden_states.shape[:2] | |
| # Get the remaining dimensions | |
| remaining_dims = hidden_states.shape[2:] | |
| # Reshape to (batch_size * seq_len, *remaining_dims) | |
| reshaped_states = hidden_states.reshape(batch_size * seq_len, *remaining_dims) | |
| # Apply unpadding using indices | |
| unpadded_states = index_first_axis(reshaped_states, indices) | |
| return unpadded_states, indices, cu_seqlens, max_seqlen_in_batch | |
| def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
| """ | |
| This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). | |
| The hidden states go from | |
| (batch, num_key_value_heads, seqlen, head_dim) | |
| to | |
| (batch, num_attention_heads, seqlen, head_dim) | |
| """ | |
| batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
| if n_rep == 1: | |
| return hidden_states | |
| hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
| return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
| class MiniCPMAttention(nn.Module): | |
| """Multi-headed attention from 'Attention Is All You Need' paper""" | |
| def __init__(self, config: MiniCPMConfig, layer_idx: Optional[int] = None): | |
| super().__init__() | |
| self.config = config | |
| self.layer_idx = layer_idx | |
| if layer_idx is None: | |
| logger.warning_once( | |
| f'Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will ' | |
| 'to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` ' | |
| 'when creating this class.' | |
| ) | |
| self.attention_dropout = config.attention_dropout | |
| self.hidden_size = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = self.hidden_size // self.num_heads | |
| self.num_key_value_heads = config.num_key_value_heads | |
| self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
| self.max_position_embeddings = config.max_position_embeddings | |
| self.rope_theta = config.rope_theta | |
| self.is_causal = True | |
| if (self.head_dim * self.num_heads) != self.hidden_size: | |
| raise ValueError( | |
| f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}' | |
| f' and `num_heads`: {self.num_heads}).' | |
| ) | |
| self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) | |
| self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) | |
| self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) | |
| self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias) | |
| self._init_rope() | |
| def _init_rope(self): | |
| if self.config.rope_scaling is None: | |
| self.rotary_emb = MiniCPMRotaryEmbedding( | |
| self.head_dim, | |
| max_position_embeddings=self.max_position_embeddings, | |
| base=self.rope_theta, | |
| ) | |
| else: | |
| scaling_type = self.config.rope_scaling['rope_type'] | |
| scaling_factor = self.config.rope_scaling.get('factor', None) | |
| if scaling_type == 'linear': | |
| self.rotary_emb = MiniCPMLinearScalingRotaryEmbedding( | |
| self.head_dim, | |
| max_position_embeddings=self.max_position_embeddings, | |
| scaling_factor=scaling_factor, | |
| base=self.rope_theta, | |
| ) | |
| elif scaling_type == 'dynamic': | |
| self.rotary_emb = MiniCPMDynamicNTKScalingRotaryEmbedding( | |
| self.head_dim, | |
| max_position_embeddings=self.max_position_embeddings, | |
| scaling_factor=scaling_factor, | |
| base=self.rope_theta, | |
| ) | |
| elif scaling_type == 'longrope': | |
| self.rotary_emb = MiniCPMLongRoPE( | |
| self.head_dim, | |
| max_position_embeddings=self.max_position_embeddings, | |
| short_factor=self.config.rope_scaling['short_factor'], | |
| long_factor=self.config.rope_scaling['long_factor'], | |
| base=self.rope_theta, | |
| original_max_position_embeddings=self.config.rope_scaling['original_max_position_embeddings'] | |
| ) | |
| else: | |
| raise ValueError(f'Unknown RoPE scaling type {scaling_type}') | |
| def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
| return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| if 'padding_mask' in kwargs: | |
| warnings.warn( | |
| 'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`' | |
| ) | |
| bsz, q_len, _ = hidden_states.size() | |
| if self.config.pretraining_tp > 1: | |
| key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp | |
| query_slices = self.q_proj.weight.split( | |
| (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0 | |
| ) | |
| key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) | |
| value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) | |
| query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)] | |
| query_states = torch.cat(query_states, dim=-1) | |
| key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)] | |
| key_states = torch.cat(key_states, dim=-1) | |
| value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)] | |
| value_states = torch.cat(value_states, dim=-1) | |
| else: | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| kv_seq_len = position_ids.max().item() + 1 | |
| cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len) | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
| # <mod> | |
| # if past_key_value is not None: | |
| # cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models | |
| # key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| # <before-after-mod> ------------------------------------------------- | |
| # ### Copied from modeling_llama_kv.py, Line 709. class LlamaAttention, function forward(). | |
| # ### [MODIFIED] Using KVCache mechanism for preallocated GPU memory optimization | |
| # ### past_key_value is utilized to leverage previously computed key and value states. | |
| # ### If past_key_value is available, reuse the states for k, v, and self_attention. | |
| if past_key_value is not None: | |
| key_states = past_key_value[0].cat(key_states, dim=2) | |
| value_states = past_key_value[1].cat(value_states, dim=2) | |
| # ### Reset past_key_value to avoid return past_key_value. | |
| past_key_value = None | |
| # </mod> | |
| # repeat k/v heads if n_kv_heads < n_heads | |
| key_states = repeat_kv(key_states, self.num_key_value_groups) | |
| value_states = repeat_kv(value_states, self.num_key_value_groups) | |
| attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
| # if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | |
| # raise ValueError( | |
| # f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is' | |
| # f' {attn_weights.size()}' | |
| # ) | |
| if attention_mask is not None: | |
| # if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
| # raise ValueError( | |
| # f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}' | |
| # ) | |
| attn_weights = attn_weights + attention_mask | |
| # upcast attention to fp32 | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
| attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | |
| attn_output = torch.matmul(attn_weights, value_states) | |
| if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
| raise ValueError( | |
| f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is' | |
| f' {attn_output.size()}' | |
| ) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
| if self.config.pretraining_tp > 1: | |
| attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2) | |
| o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1) | |
| attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)]) | |
| else: | |
| attn_output = self.o_proj(attn_output) | |
| if not output_attentions: | |
| attn_weights = None | |
| return attn_output, attn_weights, past_key_value | |
| class MiniCPMFlashAttention2(MiniCPMAttention): | |
| """ | |
| MiniCPM flash attention module. This module inherits from `MiniCPMAttention` as the weights of the module stays | |
| untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
| flash attention and deal with padding tokens in case the input contains any of them. | |
| """ | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
| # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
| # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
| self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| # MiniCPMFlashAttention2 attention does not support output_attentions | |
| if 'padding_mask' in kwargs: | |
| warnings.warn( | |
| 'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`' | |
| ) | |
| # overwrite attention_mask with padding_mask | |
| attention_mask = kwargs.pop('padding_mask') | |
| output_attentions = False | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| # Flash attention requires the input to have the shape | |
| # batch_size x seq_length x head_dim x hidden_dim | |
| # therefore we just need to keep the original shape | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| kv_seq_len = position_ids.max().item() + 1 | |
| cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len) | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
| # <mod> | |
| # if past_key_value is not None: | |
| # cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models | |
| # key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| # <before-after-mod> ------------------------------------------------- | |
| # ### Copied from modeling_llama_kv.py, Line 709. class LlamaAttention, function __init__(). | |
| # ### [MODIFIED] Using KVCache mechanism for preallocated GPU memory optimization | |
| # ### past_key_value is utilized to leverage previously computed key and value states. | |
| # ### If past_key_value is available, reuse the states for k, v, and self_attention. | |
| if past_key_value is not None: | |
| key_states = past_key_value[0].cat(key_states, dim=2) | |
| value_states = past_key_value[1].cat(value_states, dim=2) | |
| # ### Reset past_key_value to avoid return past_key_value. | |
| past_key_value = None | |
| # </mod> | |
| # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache | |
| # to be able to avoid many of these transpose/reshape/view. | |
| query_states = query_states.transpose(1, 2) | |
| key_states = key_states.transpose(1, 2) | |
| value_states = value_states.transpose(1, 2) | |
| dropout_rate = self.attention_dropout if self.training else 0.0 | |
| # In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
| # therefore the input hidden states gets silently casted in float32. Hence, we need | |
| # cast them back in the correct dtype just to be sure everything works as expected. | |
| # This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
| # in fp32. (MiniCPMRMSNorm handles it correctly) | |
| input_dtype = query_states.dtype | |
| if input_dtype == torch.float32: | |
| # Handle the case where the model is quantized | |
| if hasattr(self.config, '_pre_quantization_dtype'): | |
| target_dtype = self.config._pre_quantization_dtype | |
| else: | |
| target_dtype = self.q_proj.weight.dtype | |
| logger.warning_once( | |
| f'The input hidden states seems to be silently casted in float32, this might be related to' | |
| f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in' | |
| f' {target_dtype}.' | |
| ) | |
| query_states = query_states.to(target_dtype) | |
| key_states = key_states.to(target_dtype) | |
| value_states = value_states.to(target_dtype) | |
| attn_output = self._flash_attention_forward( | |
| query_states, key_states, value_states, None, q_len, dropout=dropout_rate | |
| ) | |
| attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | |
| attn_output = self.o_proj(attn_output) | |
| if not output_attentions: | |
| attn_weights = None | |
| return attn_output, attn_weights, past_key_value | |
| def _flash_attention_forward( | |
| self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None | |
| ): | |
| """ | |
| Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
| first unpad the input, then computes the attention scores and pad the final attention scores. | |
| Args: | |
| query_states (`torch.Tensor`): | |
| Input query states to be passed to Flash Attention API | |
| key_states (`torch.Tensor`): | |
| Input key states to be passed to Flash Attention API | |
| value_states (`torch.Tensor`): | |
| Input value states to be passed to Flash Attention API | |
| attention_mask (`torch.Tensor`): | |
| The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
| position of padding tokens and 1 for the position of non-padding tokens. | |
| dropout (`int`, *optional*): | |
| Attention dropout | |
| softmax_scale (`float`, *optional*): | |
| The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
| """ | |
| if not self._flash_attn_uses_top_left_mask: | |
| causal = self.is_causal | |
| else: | |
| # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__. | |
| causal = self.is_causal and query_length != 1 | |
| # Contains at least one padding token in the sequence | |
| if attention_mask is not None: | |
| batch_size = query_states.shape[0] | |
| query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | |
| query_states, key_states, value_states, attention_mask, query_length | |
| ) | |
| cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
| max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
| attn_output_unpad = flash_attn_varlen_func( | |
| query_states, | |
| key_states, | |
| value_states, | |
| cu_seqlens_q=cu_seqlens_q, | |
| cu_seqlens_k=cu_seqlens_k, | |
| max_seqlen_q=max_seqlen_in_batch_q, | |
| max_seqlen_k=max_seqlen_in_batch_k, | |
| dropout_p=dropout, | |
| softmax_scale=softmax_scale, | |
| causal=causal, | |
| ) | |
| attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | |
| else: | |
| attn_output = flash_attn_func( | |
| query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal | |
| ) | |
| return attn_output | |
| def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | |
| indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | |
| batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | |
| key_layer = index_first_axis( | |
| key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
| ) | |
| value_layer = index_first_axis( | |
| value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
| ) | |
| if query_length == kv_seq_len: | |
| query_layer = index_first_axis( | |
| query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k | |
| ) | |
| cu_seqlens_q = cu_seqlens_k | |
| max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
| indices_q = indices_k | |
| elif query_length == 1: | |
| max_seqlen_in_batch_q = 1 | |
| cu_seqlens_q = torch.arange( | |
| batch_size + 1, dtype=torch.int32, device=query_layer.device | |
| ) # There is a memcpy here, that is very bad. | |
| indices_q = cu_seqlens_q[:-1] | |
| query_layer = query_layer.squeeze(1) | |
| else: | |
| # The -q_len: slice assumes left padding. | |
| attention_mask = attention_mask[:, -query_length:] | |
| query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | |
| return ( | |
| query_layer, | |
| key_layer, | |
| value_layer, | |
| indices_q, | |
| (cu_seqlens_q, cu_seqlens_k), | |
| (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
| ) | |
| class MiniCPMInfLLMv2Attention(MiniCPMAttention): | |
| """ | |
| MiniCPM flash attention module. This module inherits from `MiniCPMAttention` as the weights of the module stays | |
| untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
| flash attention and deal with padding tokens in case the input contains any of them. | |
| """ | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| assert self.config._attn_implementation == 'flash_attention_2', 'Only flash_attention_2 is supported for sparse attention' | |
| # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
| # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
| # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
| self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
| # -------sparse------- | |
| self.kernel_size = self.config.sparse_config.get('kernel_size', 32) | |
| self.kernel_stride = self.config.sparse_config.get('kernel_stride', 16) | |
| self.init_blocks = self.config.sparse_config.get('init_blocks', 1) | |
| self.block_size = self.config.sparse_config.get('block_size', 64) | |
| self.window_size = self.config.sparse_config.get('window_size', 2048) | |
| self.dense_len = self.config.sparse_config.get('dense_len', 8192) | |
| self.local_blocks = self.window_size // self.block_size # local_blocks | |
| self.topk = self.config.sparse_config.get('topk', 64) + (self.window_size//self.block_size) | |
| self.use_nope = self.config.sparse_config.get('use_nope', False) | |
| self.compress_k = CompressK(self.num_key_value_heads, self.head_dim, kernel_size=self.kernel_size, kernel_stride=self.kernel_stride) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| # MiniCPMFlashAttention2 attention does not support output_attentions | |
| if 'padding_mask' in kwargs: | |
| warnings.warn( | |
| 'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`' | |
| ) | |
| # overwrite attention_mask with padding_mask | |
| attention_mask = kwargs.pop('padding_mask') | |
| output_attentions = False | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| # !save no rope | |
| if self.use_nope: | |
| query_states_no_rope = query_states.view(bsz, q_len, self.num_heads, self.head_dim) | |
| key_states_no_rope = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim) | |
| # Flash attention requires the input to have the shape | |
| # batch_size x seq_length x head_dim x hidden_dim | |
| # therefore we just need to keep the original shape | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| kv_seq_len = position_ids.max().item() + 1 | |
| cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len) | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
| # <mod> | |
| # if past_key_value is not None: | |
| # cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models | |
| # key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| # <before-after-mod> ------------------------------------------------- | |
| # ### Copied from modeling_llama_kv.py, Line 709. class LlamaAttention, function __init__(). | |
| # ### [MODIFIED] Using KVCache mechanism for preallocated GPU memory optimization | |
| # ### past_key_value is utilized to leverage previously computed key and value states. | |
| # ### If past_key_value is available, reuse the states for k, v, and self_attention. | |
| if past_key_value is not None: | |
| key_states = past_key_value[0].cat(key_states, dim=2) | |
| value_states = past_key_value[1].cat(value_states, dim=2) | |
| # ### Reset past_key_value to avoid return past_key_value. | |
| past_key_value = None | |
| # </mod> | |
| # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache | |
| # to be able to avoid many of these transpose/reshape/view. | |
| query_states = query_states.transpose(1, 2) | |
| key_states = key_states.transpose(1, 2) | |
| value_states = value_states.transpose(1, 2) | |
| if self.use_nope: | |
| key_states_no_rope = past_key_value.update_no_rope_key(key_states_no_rope, self.layer_idx) | |
| no_rope_param = { | |
| 'key_states_no_rope': key_states_no_rope, | |
| 'query_states_no_rope': query_states_no_rope, | |
| } | |
| else: | |
| no_rope_param = None | |
| dropout_rate = self.attention_dropout if self.training else 0.0 | |
| # In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
| # therefore the input hidden states gets silently casted in float32. Hence, we need | |
| # cast them back in the correct dtype just to be sure everything works as expected. | |
| # This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
| # in fp32. (MiniCPMRMSNorm handles it correctly) | |
| input_dtype = query_states.dtype | |
| if input_dtype == torch.float32: | |
| # Handle the case where the model is quantized | |
| if hasattr(self.config, '_pre_quantization_dtype'): | |
| target_dtype = self.config._pre_quantization_dtype | |
| else: | |
| target_dtype = self.q_proj.weight.dtype | |
| logger.warning_once( | |
| f'The input hidden states seems to be silently casted in float32, this might be related to' | |
| f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in' | |
| f' {target_dtype}.' | |
| ) | |
| query_states = query_states.to(target_dtype) | |
| key_states = key_states.to(target_dtype) | |
| value_states = value_states.to(target_dtype) | |
| if kv_seq_len < self.dense_len: | |
| attn_output = self._flash_attention_forward_dense( | |
| query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate) | |
| else: | |
| attn_output = self._sparse_attention_forward( | |
| query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, | |
| no_rope_param=no_rope_param, # if past_key_value is not None else None, | |
| past_key_value=past_key_value) | |
| attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | |
| attn_output = self.o_proj(attn_output) | |
| if not output_attentions: | |
| attn_weights = None | |
| return attn_output, attn_weights, past_key_value | |
| def _sparse_attention_forward( | |
| self, | |
| query_states, | |
| key_states, | |
| value_states, | |
| attention_mask, | |
| query_length, | |
| dropout=0.0, | |
| softmax_scale=None, | |
| no_rope_param=None, | |
| past_key_value=None): | |
| """ | |
| Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
| first unpad the input, then computes the attention scores and pad the final attention scores. | |
| Args: | |
| query_states (`torch.Tensor`): | |
| Input query states to be passed to Flash Attention API | |
| key_states (`torch.Tensor`): | |
| Input key states to be passed to Flash Attention API | |
| value_states (`torch.Tensor`): | |
| Input value states to be passed to Flash Attention API | |
| attention_mask (`torch.Tensor`): | |
| The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
| position of padding tokens and 1 for the position of non-padding tokens. | |
| dropout (`int`, *optional*): | |
| Attention dropout | |
| softmax_scale (`float`, *optional*): | |
| The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
| """ | |
| if not self._flash_attn_uses_top_left_mask: | |
| causal = self.is_causal | |
| else: | |
| # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__. | |
| causal = self.is_causal and query_length != 1 | |
| # Contains at least one padding token in the sequence | |
| if attention_mask is not None: | |
| batch_size = query_states.shape[0] | |
| # assert batch_size == 1, 'Only batch_size=1 is supported at the moment.' | |
| if past_key_value!=None: | |
| compressed_k, compressed_cu_seqlens = self.get_compress_k( | |
| key_states=key_states if self.use_nope ==False else no_rope_param['key_states_no_rope'], # This can be optimized a bit; | |
| attention_mask=attention_mask, | |
| past_key_value=past_key_value) | |
| query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | |
| query_states, key_states, value_states, attention_mask, query_length | |
| ) | |
| cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
| max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
| if no_rope_param != None: | |
| if max_seqlen_in_batch_q == 1: | |
| no_rope_param['query_states_no_rope'] = no_rope_param['query_states_no_rope'].squeeze(1) | |
| else: | |
| no_rope_param['query_states_no_rope'],_, _, _ = _unpad_one_tensor(no_rope_param['query_states_no_rope'],attention_mask=attention_mask) | |
| if past_key_value==None: | |
| # compress_k use varlen form | |
| compressed_k, compressed_cu_seqlens = self.compress_k(key_states,cu_seqlens_k) | |
| attn_output_unpad = self.sparse_forward( | |
| query_states, | |
| key_states, | |
| value_states, | |
| cu_seqlens_q, | |
| cu_seqlens_k, | |
| max_seqlen_in_batch_q, | |
| max_seqlen_in_batch_k, | |
| no_rope_param=no_rope_param, | |
| compressed_k=compressed_k, | |
| compressed_cu_seqlens=compressed_cu_seqlens) | |
| attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | |
| else: | |
| raise ValueError('Need attention mask') | |
| return attn_output | |
| def get_compress_k(self, key_states, attention_mask, past_key_value): | |
| """ | |
| Get compressed key states and corresponding cumulative sequence lengths. | |
| Args: | |
| key_states: Key states tensor | |
| cu_seqlens_k: Cumulative sequence lengths for keys | |
| past_key_value: Past key-value cache | |
| no_rope_param: Optional parameter containing key states without rope | |
| Returns: | |
| Tuple of (compressed_k, compressed_cu_seqlens) | |
| """ | |
| # Check if this is prefilling or initial compression condition | |
| is_prefilling = ( | |
| key_states.shape[1] >= self.dense_len and | |
| ( | |
| not past_key_value.layers[self.layer_idx].compress_k_cache | |
| ) | |
| ) | |
| if is_prefilling: | |
| unpadded_key_states, indices, cu_seqlens, max_seqlen_in_batch = _unpad_one_tensor(key_states,attention_mask=attention_mask) | |
| # Compress the keys | |
| compressed_k, compressed_cu_seqlens = self.compress_k(unpadded_key_states, cu_seqlens) | |
| past_key_value.update_compress_k( | |
| compressed_k, self.layer_idx, compressed_cu_seqlens) | |
| no_compress_k_list = [] | |
| # Compute and update no_compress_k | |
| for i in range(len(compressed_cu_seqlens)-1): | |
| no_compress_k_start = (compressed_cu_seqlens[i+1]- compressed_cu_seqlens[i]) * self.kernel_stride | |
| no_compress_k_list.append(unpadded_key_states[cu_seqlens[i]+no_compress_k_start:cu_seqlens[i+1]].clone()) | |
| past_key_value.update_no_compress_k( | |
| no_compress_k_list, self.layer_idx,kernel_stride=self.kernel_stride, | |
| kernel_size=self.kernel_size) | |
| else: | |
| # Decode case: incremental update | |
| batch_size = key_states.shape[0] # key_states.shape = [batch_size, seq, k_head_num, head_dim] | |
| key_states_split = list(torch.split( | |
| key_states[:,-1:].squeeze(1), #[batch_size, seq, k_head_num, head_dim]->[batch_size, 1, k_head_num, head_dim]-> [batch_size, k_head_num, head_dim] | |
| [1] * batch_size,dim=0, | |
| )) | |
| # Try to update no_compress_k buffer | |
| no_compress_k_list = past_key_value.update_no_compress_k( | |
| key_states_split, self.layer_idx, | |
| kernel_stride=self.kernel_stride, | |
| kernel_size=self.kernel_size) | |
| new_compressed_k_list = [] | |
| for no_compress_k in no_compress_k_list: | |
| if no_compress_k is not None: | |
| # We have enough tokens to compress | |
| new_compressed_k = no_compress_k.mean(dim=0, keepdim=True) # [1, n_heads_k, head_dim] | |
| new_compressed_k_list.append(new_compressed_k) | |
| else: | |
| new_compressed_k_list.append(None) | |
| compressed_k, compressed_cu_seqlens = past_key_value.update_compress_k(new_compressed_k_list, self.layer_idx,) | |
| return compressed_k, compressed_cu_seqlens | |
| def sparse_forward(self, | |
| query_layer, | |
| key_layer, | |
| value_layer, | |
| cu_seqlens_q, | |
| cu_seqlens_k, | |
| max_seqlen_in_batch_q, | |
| max_seqlen_in_batch_k, | |
| no_rope_param=None, | |
| compressed_k=None, | |
| compressed_cu_seqlens=None): | |
| compressed_seqlens = compressed_cu_seqlens[1:] - compressed_cu_seqlens[:-1] | |
| cache_lens = None | |
| if max_seqlen_in_batch_q==1 and max_seqlen_in_batch_k>1: #decoding | |
| seq_lens_k = cu_seqlens_k[1:] - cu_seqlens_k[:-1] | |
| cache_lens = seq_lens_k-1 | |
| topk_idx = compressed_attention( | |
| query_layer if no_rope_param is None else no_rope_param['query_states_no_rope'], | |
| compressed_k, | |
| compressed_k.clone(), | |
| self.kernel_size, | |
| self.kernel_stride, | |
| self.block_size, | |
| self.topk, | |
| cu_seqlens_q, | |
| compressed_cu_seqlens, | |
| max_seqlen_in_batch_q, | |
| compressed_seqlens.max().item(), | |
| None, | |
| init_blocks=self.init_blocks, | |
| local_blocks=self.local_blocks, | |
| cache_lens=cache_lens | |
| ) | |
| topk_attn_output = infllmv2_attn_varlen_func( | |
| query_layer, | |
| key_layer, | |
| value_layer, | |
| cu_seqlens_q, | |
| cu_seqlens_k, | |
| max_seqlen_in_batch_q, | |
| max_seqlen_in_batch_k, | |
| dropout_p=0.0, | |
| deterministic=False, | |
| softmax_scale=None, | |
| causal=max_seqlen_in_batch_q != 1, | |
| return_attn_probs=False, | |
| # block_window_size=self.window_size // self.block_size, | |
| topk_idx=topk_idx | |
| ) | |
| return topk_attn_output | |
| def _flash_attention_forward_dense( | |
| self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None | |
| ): | |
| """ | |
| Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
| first unpad the input, then computes the attention scores and pad the final attention scores. | |
| Args: | |
| query_states (`torch.Tensor`): | |
| Input query states to be passed to Flash Attention API | |
| key_states (`torch.Tensor`): | |
| Input key states to be passed to Flash Attention API | |
| value_states (`torch.Tensor`): | |
| Input value states to be passed to Flash Attention API | |
| attention_mask (`torch.Tensor`): | |
| The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
| position of padding tokens and 1 for the position of non-padding tokens. | |
| dropout (`int`, *optional*): | |
| Attention dropout | |
| softmax_scale (`float`, *optional*): | |
| The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
| """ | |
| if not self._flash_attn_uses_top_left_mask: | |
| causal = self.is_causal | |
| else: | |
| # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__. | |
| causal = self.is_causal and query_length != 1 | |
| # Contains at least one padding token in the sequence | |
| if attention_mask is not None: | |
| batch_size = query_states.shape[0] | |
| query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | |
| query_states, key_states, value_states, attention_mask, query_length | |
| ) | |
| cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
| max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
| attn_output_unpad = flash_attn_varlen_func( | |
| query_states, | |
| key_states, | |
| value_states, | |
| cu_seqlens_q=cu_seqlens_q, | |
| cu_seqlens_k=cu_seqlens_k, | |
| max_seqlen_q=max_seqlen_in_batch_q, | |
| max_seqlen_k=max_seqlen_in_batch_k, | |
| dropout_p=dropout, | |
| softmax_scale=softmax_scale, | |
| causal=causal, | |
| ) | |
| attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | |
| else: | |
| attn_output = flash_attn_func( | |
| query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal | |
| ) | |
| return attn_output | |
| def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | |
| indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | |
| batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | |
| key_layer = index_first_axis( | |
| key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
| ) | |
| value_layer = index_first_axis( | |
| value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
| ) | |
| if query_length == kv_seq_len: | |
| query_layer = index_first_axis( | |
| query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k | |
| ) | |
| cu_seqlens_q = cu_seqlens_k | |
| max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
| indices_q = indices_k | |
| elif query_length == 1: | |
| max_seqlen_in_batch_q = 1 | |
| cu_seqlens_q = torch.arange( | |
| batch_size + 1, dtype=torch.int32, device=query_layer.device | |
| ) # There is a memcpy here, that is very bad. | |
| indices_q = cu_seqlens_q[:-1] | |
| query_layer = query_layer.squeeze(1) | |
| else: | |
| # The -q_len: slice assumes left padding. | |
| attention_mask = attention_mask[:, -query_length:] | |
| query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | |
| return ( | |
| query_layer, | |
| key_layer, | |
| value_layer, | |
| indices_q, | |
| (cu_seqlens_q, cu_seqlens_k), | |
| (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
| ) | |
| class MiniCPMSdpaAttention(MiniCPMAttention): | |
| """ | |
| MiniCPM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | |
| `MiniCPMAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | |
| SDPA API. | |
| """ | |
| # Adapted from MiniCPMAttention.forward | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| if output_attentions: | |
| # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. | |
| logger.warning_once( | |
| 'MiniCPMModel is using MiniCPMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, ' | |
| 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
| ) | |
| return super().forward( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| ) | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| kv_seq_len = position_ids.max().item() + 1 | |
| cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
| # <mod> | |
| # if past_key_value is not None: | |
| # cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models | |
| # key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| # <before-after-mod> ------------------------------------------------- | |
| # ### Copied from modeling_llama_kv.py, Line 709. class LlamaAttention, function __init__(). | |
| # ### [MODIFIED] Using KVCache mechanism for preallocated GPU memory optimization | |
| # ### past_key_value is utilized to leverage previously computed key and value states. | |
| # ### If past_key_value is available, reuse the states for k, v, and self_attention. | |
| if past_key_value is not None: | |
| key_states = past_key_value[0].cat(key_states, dim=2) | |
| value_states = past_key_value[1].cat(value_states, dim=2) | |
| # ### Reset past_key_value to avoid return past_key_value. | |
| past_key_value = None | |
| # </mod> | |
| key_states = repeat_kv(key_states, self.num_key_value_groups) | |
| value_states = repeat_kv(value_states, self.num_key_value_groups) | |
| # <mod> skip | |
| # if attention_mask is not None: | |
| # if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
| # raise ValueError( | |
| # f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}' | |
| # ) | |
| # </mod> | |
| # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, | |
| # Reference: https://github.com/pytorch/pytorch/issues/112577. | |
| if query_states.device.type == 'cuda' and attention_mask is not None: | |
| query_states = query_states.contiguous() | |
| key_states = key_states.contiguous() | |
| value_states = value_states.contiguous() | |
| # <mod> | |
| attention_mask = attention_mask.to(dtype=query_states.dtype) | |
| # </mod> | |
| attn_output = torch.nn.functional.scaled_dot_product_attention( | |
| query_states, | |
| key_states, | |
| value_states, | |
| attn_mask=attention_mask, | |
| dropout_p=self.attention_dropout if self.training else 0.0, | |
| # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. | |
| is_causal=self.is_causal and attention_mask is None and q_len > 1, | |
| ) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
| attn_output = self.o_proj(attn_output) | |
| return attn_output, None, past_key_value | |
| MINICPM_ATTENTION_CLASSES = { | |
| 'eager': MiniCPMAttention, | |
| 'flash_attention_2': MiniCPMFlashAttention2, | |
| 'sdpa': MiniCPMSdpaAttention, | |
| } | |
| class MiniCPMDecoderLayer(nn.Module): | |
| def __init__(self, config: MiniCPMConfig, layer_idx: int): | |
| super().__init__() | |
| self.hidden_size = config.hidden_size | |
| if config.sparse_config is not None and torch.cuda.is_available(): | |
| self.self_attn = MiniCPMInfLLMv2Attention(config=config, layer_idx=layer_idx) | |
| else: | |
| # <mod> | |
| # self.self_attn = MINICPM_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) | |
| # <before-after-mod> ------------------------------------------------- | |
| self.self_attn = MINICPM_ATTENTION_CLASSES["eager"](config=config, layer_idx=layer_idx) | |
| # </mod> | |
| self.mlp = MiniCPMMLP(config) | |
| self.input_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.post_attention_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.scale_depth = config.scale_depth | |
| self.num_hidden_layers = config.num_hidden_layers | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| output_attentions: Optional[bool] = False, | |
| use_cache: Optional[bool] = False, | |
| **kwargs, | |
| ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
| attention_mask (`torch.FloatTensor`, *optional*): | |
| attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, | |
| query_sequence_length, key_sequence_length)` if default attention is used. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
| (see `past_key_values`). | |
| past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
| """ | |
| if 'padding_mask' in kwargs: | |
| warnings.warn( | |
| 'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`' | |
| ) | |
| residual = hidden_states | |
| hidden_states = self.input_layernorm(hidden_states) | |
| # Self Attention | |
| hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| **kwargs, | |
| ) | |
| hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers)) | |
| # Fully Connected | |
| residual = hidden_states | |
| hidden_states = self.post_attention_layernorm(hidden_states) | |
| hidden_states = self.mlp(hidden_states) | |
| hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers)) | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (self_attn_weights,) | |
| if use_cache: | |
| outputs += (present_key_value,) | |
| return outputs | |
| MINICPM_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
| etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`MiniCPMConfig`]): | |
| Model configuration class with all the parameters of the model. Initializing with a config file does not | |
| load the weights associated with the model, only the configuration. Check out the | |
| [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| class MiniCPMPreTrainedModel(PreTrainedModel): | |
| config_class = MiniCPMConfig | |
| base_model_prefix = 'model' | |
| supports_gradient_checkpointing = True | |
| _no_split_modules = ['MiniCPMDecoderLayer'] | |
| _skip_keys_device_placement = 'past_key_values' | |
| _supports_flash_attn_2 = True | |
| _supports_sdpa = True | |
| _supports_cache_class = True | |
| def _init_weights(self, module): | |
| std = self.config.initializer_range | |
| if isinstance(module, nn.Linear): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| MINICPM_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
| it. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | |
| `past_key_values`). | |
| If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
| and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
| information on the default strategy. | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
| config.n_positions - 1]`. | |
| [What are position IDs?](../glossary#position-ids) | |
| past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | |
| Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
| blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | |
| returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | |
| Two formats are allowed: | |
| - a [`~cache_utils.Cache`] instance; | |
| - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | |
| shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | |
| cache format. | |
| The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | |
| legacy cache format will be returned. | |
| If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | |
| have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | |
| of shape `(batch_size, sequence_length)`. | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
| is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
| model's internal embedding lookup matrix. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
| `past_key_values`). | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| class MiniCPMModel(MiniCPMPreTrainedModel): | |
| """ | |
| Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniCPMDecoderLayer`] | |
| Args: | |
| config: MiniCPMConfig | |
| """ | |
| def __init__(self, config: MiniCPMConfig): | |
| super().__init__(config) | |
| self.padding_idx = config.pad_token_id | |
| self.vocab_size = config.vocab_size | |
| self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | |
| self.layers = nn.ModuleList( | |
| [MiniCPMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | |
| ) | |
| # <mod> | |
| # self._use_sdpa = config._attn_implementation == 'sdpa' | |
| # self._use_flash_attention_2 = config._attn_implementation == 'flash_attention_2' | |
| # <before-after-mod> ------------------------------------------------- | |
| self._use_sdpa, self._use_flash_attention_2 = False, False | |
| # </mod> | |
| self.norm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.gradient_checkpointing = False | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.embed_tokens = value | |
| # </mod> | |
| # Copied from eagle/model/modeling_llama_kv.py, Line 1010, class LlamaModel, function _prepare_decoder_attention_mask(). | |
| # ### Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask | |
| def _prepare_decoder_attention_mask( | |
| self, attention_mask, input_shape, inputs_embeds, past_key_values_length | |
| ): | |
| # create causal mask | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| combined_attention_mask = None | |
| if input_shape[-1] > 1: | |
| combined_attention_mask = _make_causal_mask( | |
| input_shape, | |
| # inputs_embeds.dtype, | |
| torch.float32, # [MODIFIED] force to cast to float32 | |
| device=inputs_embeds.device, | |
| past_key_values_length=past_key_values_length, | |
| ) | |
| if attention_mask is not None: | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| expanded_attn_mask = _expand_mask( | |
| attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] | |
| ).to(inputs_embeds.device) | |
| combined_attention_mask = ( | |
| expanded_attn_mask | |
| if combined_attention_mask is None | |
| else expanded_attn_mask + combined_attention_mask | |
| ) | |
| if hasattr(self, "tree_mask") and self.tree_mask is not None: | |
| tree_mask = self.tree_mask | |
| tree_len = tree_mask.size(-1) | |
| combined_attention_mask[:, :, -tree_len:, -tree_len:][ | |
| tree_mask == 0 | |
| ] = combined_attention_mask.min() | |
| return combined_attention_mask | |
| # </mod> | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values=None, # [MODIFIED] past_key_value is KVCache class | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPast]: | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # retrieve input_ids and inputs_embeds | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time') | |
| elif input_ids is not None: | |
| batch_size, seq_length = input_ids.shape[:2] | |
| elif inputs_embeds is not None: | |
| batch_size, seq_length = inputs_embeds.shape[:2] | |
| else: | |
| raise ValueError('You have to specify either input_ids or inputs_embeds') | |
| if self.gradient_checkpointing and self.training: | |
| if use_cache: | |
| logger.warning_once( | |
| '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...' | |
| ) | |
| use_cache = False | |
| past_key_values_length = 0 | |
| # <mod> use eagle tree KVCache | |
| # if use_cache: | |
| # use_legacy_cache = not isinstance(past_key_values, Cache) | |
| # if use_legacy_cache: | |
| # raise ValueError( | |
| # 'You must use the new past_key_values format, such as the Cache class, instead of the old tuple format.' | |
| # ) | |
| # # Calculate the usable length of past key values | |
| # past_key_values_length = past_key_values.get_seq_length() if isinstance(past_key_values, InfLLMv2Cache) else 0 | |
| # # Initialize InfLLMv2Cache if needed | |
| # if self.config.sparse_config is not None and torch.cuda.is_available() and past_key_values_length == 0: | |
| # past_key_values = InfLLMv2Cache(config = self.config, num_hidden_layers=self.config.num_hidden_layers) | |
| # <before-after-mod> ------------------------------------------------- | |
| # From modeling_llama_kv.py Line 1088:... | |
| seq_length_with_past = seq_length | |
| past_key_values_length = 0 | |
| if past_key_values is not None: | |
| past_key_values_length = past_key_values[0][0].shape[2] | |
| seq_length_with_past = seq_length_with_past + past_key_values_length | |
| # </mod> | |
| if position_ids is None: | |
| device = input_ids.device if input_ids is not None else inputs_embeds.device | |
| position_ids = torch.arange( | |
| past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device | |
| ) | |
| # <mod> | |
| # position_ids = position_ids.unsqueeze(0) | |
| position_ids = position_ids.unsqueeze(0).view(-1, seq_length) | |
| # </mod> | |
| else: # <mod> | |
| position_ids = position_ids.view(-1, seq_length).long() | |
| # </mod> | |
| if inputs_embeds is None: | |
| inputs_embeds = self.embed_tokens(input_ids) * self.config.scale_emb | |
| # <mod> | |
| # 暂时不支持flash attention, 使用 sdpa | |
| # if self._use_flash_attention_2: | |
| # # 2d mask is passed through the layers | |
| # # attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None | |
| # if attention_mask is None: | |
| # raise ValueError( | |
| # f'need attention_mask for flash attention, but got {attention_mask}.' | |
| # ) | |
| # elif self._use_sdpa and not output_attentions: | |
| # # output_attentions=True can not be supported when using SDPA, and we fall back on | |
| # # the manual implementation that requires a 4D causal mask in all cases. | |
| # attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( | |
| # attention_mask, | |
| # (batch_size, seq_length), | |
| # inputs_embeds, | |
| # past_key_values_length, | |
| # ) | |
| # else: | |
| # # 4d mask is passed through the layers | |
| # attention_mask = _prepare_4d_causal_attention_mask( | |
| # attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length | |
| # ) | |
| # <before-after-mod> ------------------------------------------------- | |
| # For HF space demo, use MiniCPMAttention **ONLY** | |
| # # below is copied from modeling_llama_kv.py, Line 1110 | |
| if attention_mask is None: | |
| attention_mask = torch.ones( | |
| (batch_size, seq_length_with_past), | |
| # (batch_size, seq_length), | |
| dtype=torch.bool, | |
| device=inputs_embeds.device, | |
| ) | |
| attention_mask = self._prepare_decoder_attention_mask( | |
| attention_mask, | |
| (batch_size, seq_length), | |
| inputs_embeds, | |
| past_key_values_length, | |
| ) | |
| # </mod> | |
| # embed positions | |
| hidden_states = inputs_embeds | |
| # <mod> | |
| # ### decoder layers | |
| # all_hidden_states = () if output_hidden_states else None | |
| # all_self_attns = () if output_attentions else None | |
| # next_decoder_cache = None | |
| # <before-after-mod> ------------------------------------------------- | |
| # decoder layers | |
| all_hidden_states = () | |
| all_self_attns = () if output_attentions else None | |
| next_decoder_cache = () if use_cache else None | |
| # </mod> | |
| # <mod> | |
| # for decoder_layer in self.layers: | |
| # if output_hidden_states: | |
| # all_hidden_states += (hidden_states,) | |
| # if self.gradient_checkpointing and self.training: | |
| # layer_outputs = self._gradient_checkpointing_func( | |
| # decoder_layer.__call__, | |
| # hidden_states, | |
| # attention_mask, | |
| # position_ids, | |
| # past_key_values, | |
| # output_attentions, | |
| # use_cache, | |
| # ) | |
| # else: | |
| # layer_outputs = decoder_layer( | |
| # hidden_states, | |
| # attention_mask=attention_mask, | |
| # position_ids=position_ids, | |
| # past_key_value=past_key_values, | |
| # output_attentions=output_attentions, | |
| # use_cache=use_cache, | |
| # ) | |
| # hidden_states = layer_outputs[0] | |
| # if use_cache: | |
| # next_decoder_cache = layer_outputs[2 if output_attentions else 1] | |
| # if output_attentions: | |
| # all_self_attns += (layer_outputs[1],) | |
| # <before-after-mod> ------------------------------------------------- | |
| # below is simplified based on modeling_llama_kv.py, Line 1137 | |
| for idx, decoder_layer in enumerate(self.layers): | |
| if idx==len(self.layers)-3 or idx==len(self.layers)//2 or idx==2: | |
| all_hidden_states += (hidden_states,) | |
| past_key_value = ( | |
| past_key_values[idx] if past_key_values is not None else None | |
| ) | |
| layer_outputs = decoder_layer( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if use_cache: | |
| next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) | |
| if output_attentions: | |
| all_self_attns += (layer_outputs[1],) | |
| # </mod> | |
| hidden_states = self.norm(hidden_states) | |
| # add hidden states from the last decoder layer | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| next_cache = None | |
| if use_cache: | |
| # <mod> | |
| # next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache | |
| next_cache = next_decoder_cache | |
| # </mod> | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | |
| return BaseModelOutputWithPast( | |
| last_hidden_state=hidden_states, | |
| past_key_values=next_cache, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attns, | |
| ) | |
| class MiniCPMForCausalLM(MiniCPMPreTrainedModel): | |
| _tied_weights_keys = ['lm_head.weight'] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.model = MiniCPMModel(config) | |
| self.vocab_size = config.vocab_size | |
| self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.model.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.model.embed_tokens = value | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head = new_embeddings | |
| def set_decoder(self, decoder): | |
| self.model = decoder | |
| def get_decoder(self): | |
| return self.model | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values=None, # [MODIFIED] past_key_value is KVCache class | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| logits_to_keep: Union[int, torch.Tensor] = 0, | |
| **kwargs, | |
| ) -> Union[Tuple, CausalLMOutputWithPast]: | |
| r""" | |
| Args: | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
| config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
| (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
| Returns: | |
| Example: | |
| ```python | |
| >>> from transformers import AutoTokenizer, MiniCPMForCausalLM | |
| >>> model = MiniCPMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) | |
| >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) | |
| >>> prompt = "Hey, are you conscious? Can you talk to me?" | |
| >>> inputs = tokenizer(prompt, return_tensors="pt") | |
| >>> # Generate | |
| >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | |
| >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
| "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | |
| ```""" | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
| outputs = self.model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = outputs[0] | |
| # Only compute necessary logits, and do not upcast them to float if we are not computing the loss | |
| slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep | |
| hidden_states = hidden_states[:, slice_indices, :].contiguous() | |
| if self.config.pretraining_tp > 1: | |
| lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) | |
| logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)] | |
| logits = torch.cat(logits, dim=-1) | |
| else: | |
| logits = self.lm_head(hidden_states / (self.config.hidden_size / self.config.dim_model_base)) | |
| logits = logits.float() | |
| loss = None | |
| if labels is not None: | |
| # Shift so that tokens < n predict n | |
| shift_logits = logits[..., :-1, :].contiguous() | |
| shift_labels = labels[..., 1:].contiguous() | |
| # Flatten the tokens | |
| loss_fct = CrossEntropyLoss() | |
| shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
| shift_labels = shift_labels.view(-1) | |
| # Enable model parallelism | |
| shift_labels = shift_labels.to(shift_logits.device) | |
| loss = loss_fct(shift_logits, shift_labels) | |
| if not return_dict: | |
| output = (logits,) + outputs[1:] | |
| return (loss,) + output if loss is not None else output | |
| return CausalLMOutputWithPast( | |
| loss=loss, | |
| logits=logits, | |
| past_key_values=outputs.past_key_values, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| def prepare_inputs_for_generation( | |
| self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs | |
| ): | |
| if past_key_values is not None: | |
| if isinstance(past_key_values, Cache): | |
| # Use the new Cache class methods | |
| cache_length = past_key_values.get_seq_length() | |
| if self.config.sparse_config is not None and torch.cuda.is_available() and cache_length == 0: | |
| past_key_values = InfLLMv2Cache(config = self.config, num_hidden_layers=self.config.num_hidden_layers) | |
| past_length = cache_length | |
| max_cache_length = None | |
| else: | |
| raise ValueError( | |
| 'You must use the new past_key_values format, such as the Cache class, instead of the old tuple format.' | |
| ) | |
| # Keep only the unprocessed tokens: | |
| # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where | |
| # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as | |
| # input) | |
| if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: | |
| input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):] | |
| # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard | |
| # input_ids based on the past_length. | |
| elif past_length < input_ids.shape[1]: | |
| input_ids = input_ids[:, past_length:] | |
| # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. | |
| # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. | |
| if ( | |
| max_cache_length is not None | |
| and attention_mask is not None | |
| and cache_length + input_ids.shape[1] > max_cache_length | |
| ): | |
| attention_mask = attention_mask[:, -max_cache_length:] | |
| position_ids = kwargs.get('position_ids', None) | |
| if attention_mask is not None and position_ids is None: | |
| # create position_ids on the fly for batch generation | |
| position_ids = attention_mask.long().cumsum(-1) - 1 | |
| position_ids.masked_fill_(attention_mask == 0, 1) | |
| if past_key_values: | |
| position_ids = position_ids[:, -input_ids.shape[1]:] | |
| # if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
| if inputs_embeds is not None and past_key_values is None: | |
| model_inputs = {'inputs_embeds': inputs_embeds} | |
| else: | |
| model_inputs = {'input_ids': input_ids} | |
| model_inputs.update( | |
| { | |
| 'position_ids': position_ids, | |
| 'past_key_values': past_key_values, | |
| 'use_cache': kwargs.get('use_cache'), | |
| 'attention_mask': attention_mask, | |
| } | |
| ) | |
| # Forward ALL kwargs that are uninitialized (e.g. `use_cache`). | |
| for key, value in kwargs.items(): | |
| if key not in model_inputs: | |
| model_inputs[key] = value | |
| return model_inputs | |
| def _reorder_cache(past_key_values, beam_idx): | |
| reordered_past = () | |
| for layer_past in past_key_values: | |
| reordered_past += ( | |
| tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | |
| ) | |
| return reordered_past | |
| def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = 'user', | |
| max_length: int = 4096, num_beams=1, do_sample=True, top_p=0.8, temperature=0.3, logits_processor=None, | |
| **kwargs): | |
| if history is None: | |
| history = [] | |
| if logits_processor: | |
| gen_kwargs = { | |
| 'max_length': max_length, | |
| 'num_beams': num_beams, | |
| 'do_sample': do_sample, | |
| 'top_p': top_p, | |
| 'temperature': temperature, | |
| 'logits_processor': logits_processor, | |
| **kwargs | |
| } | |
| else: | |
| gen_kwargs = { | |
| 'max_length': max_length, | |
| 'num_beams': num_beams, | |
| 'do_sample': do_sample, | |
| 'top_p': top_p, | |
| 'temperature': temperature, | |
| 'logits_processor': logits_processor, | |
| **kwargs | |
| } | |
| history.append({'role': role, 'content': query}) | |
| history_str = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=False) | |
| inputs = tokenizer(history_str, return_tensors='pt').to(self.device) | |
| outputs = self.generate(**inputs, **gen_kwargs) | |
| outputs = outputs.tolist()[0][len(inputs['input_ids'][0]):-1] | |
| response = tokenizer.decode(outputs) | |
| pattern = re.compile(r'.*?(?=<AI>|<用户>)', re.DOTALL) | |
| matches = pattern.findall(response) | |
| if len(matches) > 0: | |
| response = matches[0] | |
| history.append({'role': 'assistant', 'content': response}) | |
| return response, history | |
| class MiniCPMForSequenceClassification(MiniCPMPreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.model = MiniCPMModel(config) | |
| self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.model.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.model.embed_tokens = value | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
| config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
| `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| transformer_outputs = self.model( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| logits = self.score(hidden_states) | |
| if input_ids is not None: | |
| batch_size = input_ids.shape[0] | |
| else: | |
| batch_size = inputs_embeds.shape[0] | |
| if self.config.pad_token_id is None and batch_size != 1: | |
| raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.') | |
| if self.config.pad_token_id is None: | |
| sequence_lengths = -1 | |
| else: | |
| if input_ids is not None: | |
| sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to( | |
| logits.device | |
| ) | |
| else: | |
| sequence_lengths = -1 | |
| pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | |
| loss = None | |
| if labels is not None: | |
| labels = labels.to(logits.device) | |
| if self.config.problem_type is None: | |
| if self.num_labels == 1: | |
| self.config.problem_type = 'regression' | |
| elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
| self.config.problem_type = 'single_label_classification' | |
| else: | |
| self.config.problem_type = 'multi_label_classification' | |
| if self.config.problem_type == 'regression': | |
| loss_fct = MSELoss() | |
| if self.num_labels == 1: | |
| loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | |
| else: | |
| loss = loss_fct(pooled_logits, labels) | |
| elif self.config.problem_type == 'single_label_classification': | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | |
| elif self.config.problem_type == 'multi_label_classification': | |
| loss_fct = BCEWithLogitsLoss() | |
| loss = loss_fct(pooled_logits, labels) | |
| if not return_dict: | |
| output = (pooled_logits,) + transformer_outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return SequenceClassifierOutputWithPast( | |
| loss=loss, | |
| logits=pooled_logits, | |
| past_key_values=transformer_outputs.past_key_values, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| ) | |