Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import json
|
| 3 |
import pandas as pd
|
|
|
|
|
|
|
| 4 |
from urllib.request import urlopen, URLError
|
| 5 |
import re
|
| 6 |
from datetime import datetime
|
|
|
|
| 7 |
|
| 8 |
# Constants
|
| 9 |
CITATION_BUTTON_TEXT = r"""@misc{2023opencompass,
|
|
@@ -11,16 +14,23 @@ CITATION_BUTTON_TEXT = r"""@misc{2023opencompass,
|
|
| 11 |
author={OpenCompass Contributors},
|
| 12 |
howpublished = {\url{https://github.com/open-compass/opencompass}},
|
| 13 |
year={2023}
|
|
|
|
| 14 |
}"""
|
| 15 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
DATA_URL_BASE = "http://opencompass.oss-cn-shanghai.aliyuncs.com/assets/research-rank/research-data.REALTIME."
|
| 20 |
|
| 21 |
def find_latest_data_url():
|
| 22 |
"""Find the latest available data URL by trying different dates."""
|
| 23 |
today = datetime.now()
|
|
|
|
| 24 |
for i in range(365):
|
| 25 |
date = today.replace(day=today.day - i)
|
| 26 |
date_str = date.strftime("%Y%m%d")
|
|
@@ -30,6 +40,7 @@ def find_latest_data_url():
|
|
| 30 |
return url, date_str
|
| 31 |
except URLError:
|
| 32 |
continue
|
|
|
|
| 33 |
return None, None
|
| 34 |
|
| 35 |
def get_latest_data():
|
|
@@ -40,6 +51,7 @@ def get_latest_data():
|
|
| 40 |
formatted_update_time = datetime.strptime(update_time, "%Y%m%d").strftime("%Y-%m-%d")
|
| 41 |
return data_url, formatted_update_time
|
| 42 |
|
|
|
|
| 43 |
def get_leaderboard_title(update_time):
|
| 44 |
return f"# CompassAcademic Leaderboard (Last Updated: {update_time})"
|
| 45 |
|
|
@@ -50,36 +62,72 @@ The CompassAcademic currently focuses on the comprehensive reasoning abilities o
|
|
| 50 |
- Prompts and reproduction scripts can be found in [**OpenCompass**: A Toolkit for Evaluation of LLMs](https://github.com/open-compass/opencompass)🏆.
|
| 51 |
"""
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
MODEL_SIZE = ['<10B', '10B-70B', '>70B', 'Unknown']
|
| 54 |
MODEL_TYPE = ['API', 'OpenSource']
|
| 55 |
|
|
|
|
| 56 |
def load_data(data_url):
|
| 57 |
response = urlopen(data_url)
|
| 58 |
data = json.loads(response.read().decode('utf-8'))
|
| 59 |
return data
|
| 60 |
|
|
|
|
| 61 |
def build_main_table(data):
|
| 62 |
df = pd.DataFrame(data['globalData']['OverallTable'])
|
|
|
|
|
|
|
| 63 |
models_data = data['models']
|
| 64 |
df['OpenSource'] = df['model'].apply(
|
| 65 |
lambda x: 'Yes' if models_data[x]['release'] == 'OpenSource' else 'No'
|
| 66 |
)
|
|
|
|
|
|
|
| 67 |
df['Rank'] = df['Average'].rank(ascending=False, method='min').astype(int)
|
| 68 |
-
|
| 69 |
columns = {
|
| 70 |
-
'Rank': 'Rank',
|
| 71 |
-
'
|
| 72 |
-
'
|
| 73 |
-
'
|
| 74 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
}
|
| 76 |
df = df[list(columns.keys())].rename(columns=columns)
|
| 77 |
return df
|
| 78 |
|
|
|
|
| 79 |
def filter_table(df, size_ranges, model_types):
|
| 80 |
filtered_df = df.copy()
|
| 81 |
-
|
|
|
|
| 82 |
if size_ranges:
|
|
|
|
| 83 |
def get_size_in_B(param):
|
| 84 |
if param == 'N/A':
|
| 85 |
return None
|
|
@@ -87,23 +135,30 @@ def filter_table(df, size_ranges, model_types):
|
|
| 87 |
return float(param.replace('B', ''))
|
| 88 |
except:
|
| 89 |
return None
|
| 90 |
-
|
| 91 |
-
filtered_df['size_in_B'] = filtered_df['Parameters'].apply(
|
|
|
|
|
|
|
|
|
|
| 92 |
mask = pd.Series(False, index=filtered_df.index)
|
| 93 |
-
|
| 94 |
for size_range in size_ranges:
|
| 95 |
if size_range == '<10B':
|
| 96 |
-
mask |= (filtered_df['size_in_B'] < 10) & (
|
|
|
|
|
|
|
| 97 |
elif size_range == '10B-70B':
|
| 98 |
-
mask |= (filtered_df['size_in_B'] >= 10) & (
|
|
|
|
|
|
|
| 99 |
elif size_range == '>70B':
|
| 100 |
mask |= filtered_df['size_in_B'] >= 70
|
| 101 |
elif size_range == 'Unknown':
|
| 102 |
mask |= filtered_df['size_in_B'].isna()
|
| 103 |
-
|
| 104 |
filtered_df = filtered_df[mask]
|
| 105 |
filtered_df.drop('size_in_B', axis=1, inplace=True)
|
| 106 |
-
|
|
|
|
| 107 |
if model_types:
|
| 108 |
type_mask = pd.Series(False, index=filtered_df.index)
|
| 109 |
for model_type in model_types:
|
|
@@ -112,79 +167,49 @@ def filter_table(df, size_ranges, model_types):
|
|
| 112 |
elif model_type == 'OpenSource':
|
| 113 |
type_mask |= filtered_df['OpenSource'] == 'Yes'
|
| 114 |
filtered_df = filtered_df[type_mask]
|
| 115 |
-
|
| 116 |
return filtered_df
|
| 117 |
|
|
|
|
| 118 |
def calculate_column_widths(df):
|
|
|
|
| 119 |
column_widths = []
|
|
|
|
| 120 |
for column in df.columns:
|
|
|
|
| 121 |
header_length = len(str(column))
|
| 122 |
max_content_length = df[column].astype(str).map(len).max()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
width = max(header_length * 10, max_content_length * 8) + 20
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
column_widths.append(width)
|
| 126 |
-
return column_widths
|
| 127 |
|
| 128 |
-
|
| 129 |
-
def __init__(self):
|
| 130 |
-
self.current_df = None
|
| 131 |
|
| 132 |
-
data_state = DataState()
|
| 133 |
|
| 134 |
def create_interface():
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
])
|
| 140 |
|
| 141 |
-
def load_initial_data():
|
| 142 |
-
try:
|
| 143 |
-
data_url, update_time = get_latest_data()
|
| 144 |
-
data = load_data(data_url)
|
| 145 |
-
new_df = build_main_table(data)
|
| 146 |
-
data_state.current_df = new_df
|
| 147 |
-
filtered_df = filter_table(new_df, MODEL_SIZE, MODEL_TYPE)
|
| 148 |
-
return get_leaderboard_title(update_time), filtered_df.sort_values("Average Score", ascending=False)
|
| 149 |
-
except Exception as e:
|
| 150 |
-
print(f"Error loading initial data: {e}")
|
| 151 |
-
return "# CompassAcademic Leaderboard (Error loading data)", empty_df
|
| 152 |
-
|
| 153 |
-
def refresh_data():
|
| 154 |
-
try:
|
| 155 |
-
data_url, update_time = get_latest_data()
|
| 156 |
-
data = load_data(data_url)
|
| 157 |
-
new_df = build_main_table(data)
|
| 158 |
-
data_state.current_df = new_df
|
| 159 |
-
filtered_df = filter_table(new_df, MODEL_SIZE, MODEL_TYPE)
|
| 160 |
-
return get_leaderboard_title(update_time), filtered_df.sort_values("Average Score", ascending=False)
|
| 161 |
-
except Exception as e:
|
| 162 |
-
print(f"Error refreshing data: {e}")
|
| 163 |
-
return None, None
|
| 164 |
-
|
| 165 |
-
def auto_refresh():
|
| 166 |
-
"""Single refresh function for automatic updates"""
|
| 167 |
-
title, data = refresh_data()
|
| 168 |
-
status = f"Last auto update: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
|
| 169 |
-
if title and data is not None:
|
| 170 |
-
return title, data, status
|
| 171 |
-
return None, None, None
|
| 172 |
-
|
| 173 |
-
def update_table(size_ranges, model_types):
|
| 174 |
-
if data_state.current_df is None:
|
| 175 |
-
return empty_df
|
| 176 |
-
filtered_df = filter_table(data_state.current_df, size_ranges, model_types)
|
| 177 |
-
return filtered_df.sort_values("Average Score", ascending=False)
|
| 178 |
-
|
| 179 |
-
initial_title, initial_data = load_initial_data()
|
| 180 |
-
|
| 181 |
with gr.Blocks() as demo:
|
| 182 |
-
title_comp = gr.Markdown(
|
| 183 |
-
|
| 184 |
with gr.Tabs() as tabs:
|
| 185 |
with gr.TabItem("🏅 Main Leaderboard", elem_id='main'):
|
| 186 |
gr.Markdown(MAIN_LEADERBOARD_DESCRIPTION)
|
| 187 |
-
|
| 188 |
with gr.Row():
|
| 189 |
with gr.Column():
|
| 190 |
size_filter = gr.CheckboxGroup(
|
|
@@ -200,47 +225,52 @@ def create_interface():
|
|
| 200 |
label='Model Type',
|
| 201 |
interactive=True,
|
| 202 |
)
|
| 203 |
-
|
| 204 |
with gr.Column():
|
| 205 |
table = gr.DataFrame(
|
| 206 |
-
value=
|
| 207 |
interactive=False,
|
| 208 |
-
wrap=False,
|
| 209 |
-
column_widths=calculate_column_widths(
|
| 210 |
)
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
|
|
|
|
|
|
| 232 |
size_filter.change(
|
| 233 |
fn=update_table,
|
| 234 |
inputs=[size_filter, type_filter],
|
| 235 |
outputs=table,
|
| 236 |
)
|
| 237 |
-
|
| 238 |
type_filter.change(
|
| 239 |
fn=update_table,
|
| 240 |
inputs=[size_filter, type_filter],
|
| 241 |
outputs=table,
|
| 242 |
)
|
| 243 |
|
|
|
|
|
|
|
|
|
|
| 244 |
with gr.Row():
|
| 245 |
with gr.Accordion("Citation", open=False):
|
| 246 |
citation_button = gr.Textbox(
|
|
@@ -251,7 +281,7 @@ def create_interface():
|
|
| 251 |
|
| 252 |
return demo
|
| 253 |
|
|
|
|
| 254 |
if __name__ == '__main__':
|
| 255 |
demo = create_interface()
|
| 256 |
-
demo.
|
| 257 |
-
demo.launch(server_name='0.0.0.0')
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import json
|
| 3 |
import pandas as pd
|
| 4 |
+
from collections import defaultdict
|
| 5 |
+
import copy as cp
|
| 6 |
from urllib.request import urlopen, URLError
|
| 7 |
import re
|
| 8 |
from datetime import datetime
|
| 9 |
+
import time
|
| 10 |
|
| 11 |
# Constants
|
| 12 |
CITATION_BUTTON_TEXT = r"""@misc{2023opencompass,
|
|
|
|
| 14 |
author={OpenCompass Contributors},
|
| 15 |
howpublished = {\url{https://github.com/open-compass/opencompass}},
|
| 16 |
year={2023}
|
| 17 |
+
},
|
| 18 |
}"""
|
| 19 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
| 20 |
+
OPENCOMPASS_README = (
|
| 21 |
+
'https://raw.githubusercontent.com/open-compass/opencompass/main/README.md'
|
| 22 |
+
)
|
| 23 |
+
GITHUB_REPO = 'https://github.com/open-compass/opencompass'
|
| 24 |
+
GITHUB_RAW = 'https://raw.githubusercontent.com/open-compass/opencompass'
|
| 25 |
+
GITHUB_BLOB = 'https://github.com/open-compass/opencompass/blob'
|
| 26 |
+
|
| 27 |
+
# Base URL for the JSON data
|
| 28 |
DATA_URL_BASE = "http://opencompass.oss-cn-shanghai.aliyuncs.com/assets/research-rank/research-data.REALTIME."
|
| 29 |
|
| 30 |
def find_latest_data_url():
|
| 31 |
"""Find the latest available data URL by trying different dates."""
|
| 32 |
today = datetime.now()
|
| 33 |
+
# Try last 365 days
|
| 34 |
for i in range(365):
|
| 35 |
date = today.replace(day=today.day - i)
|
| 36 |
date_str = date.strftime("%Y%m%d")
|
|
|
|
| 40 |
return url, date_str
|
| 41 |
except URLError:
|
| 42 |
continue
|
| 43 |
+
# If no valid URL found, return None
|
| 44 |
return None, None
|
| 45 |
|
| 46 |
def get_latest_data():
|
|
|
|
| 51 |
formatted_update_time = datetime.strptime(update_time, "%Y%m%d").strftime("%Y-%m-%d")
|
| 52 |
return data_url, formatted_update_time
|
| 53 |
|
| 54 |
+
# Markdown content
|
| 55 |
def get_leaderboard_title(update_time):
|
| 56 |
return f"# CompassAcademic Leaderboard (Last Updated: {update_time})"
|
| 57 |
|
|
|
|
| 62 |
- Prompts and reproduction scripts can be found in [**OpenCompass**: A Toolkit for Evaluation of LLMs](https://github.com/open-compass/opencompass)🏆.
|
| 63 |
"""
|
| 64 |
|
| 65 |
+
def fix_image_urls(content):
|
| 66 |
+
"""Fix image URLs in markdown content."""
|
| 67 |
+
# Handle the specific logo.svg path
|
| 68 |
+
content = content.replace(
|
| 69 |
+
'docs/en/_static/image/logo.svg',
|
| 70 |
+
'https://raw.githubusercontent.com/open-compass/opencompass/main/docs/en/_static/image/logo.svg',
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
# Replace other relative image paths with absolute GitHub URLs
|
| 74 |
+
content = re.sub(
|
| 75 |
+
r'!\[[^\]]*\]\((?!http)([^)]+)\)',
|
| 76 |
+
lambda m: f'})',
|
| 77 |
+
content,
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
return content
|
| 81 |
+
|
| 82 |
+
|
| 83 |
MODEL_SIZE = ['<10B', '10B-70B', '>70B', 'Unknown']
|
| 84 |
MODEL_TYPE = ['API', 'OpenSource']
|
| 85 |
|
| 86 |
+
|
| 87 |
def load_data(data_url):
|
| 88 |
response = urlopen(data_url)
|
| 89 |
data = json.loads(response.read().decode('utf-8'))
|
| 90 |
return data
|
| 91 |
|
| 92 |
+
|
| 93 |
def build_main_table(data):
|
| 94 |
df = pd.DataFrame(data['globalData']['OverallTable'])
|
| 95 |
+
|
| 96 |
+
# Add OpenSource column based on models data
|
| 97 |
models_data = data['models']
|
| 98 |
df['OpenSource'] = df['model'].apply(
|
| 99 |
lambda x: 'Yes' if models_data[x]['release'] == 'OpenSource' else 'No'
|
| 100 |
)
|
| 101 |
+
|
| 102 |
+
# Add Rank column based on Average Score
|
| 103 |
df['Rank'] = df['Average'].rank(ascending=False, method='min').astype(int)
|
| 104 |
+
|
| 105 |
columns = {
|
| 106 |
+
'Rank': 'Rank',
|
| 107 |
+
'model': 'Model',
|
| 108 |
+
'org': 'Organization',
|
| 109 |
+
'num': 'Parameters',
|
| 110 |
+
'OpenSource': 'OpenSource',
|
| 111 |
+
'Average': 'Average Score',
|
| 112 |
+
'BBH': 'BBH',
|
| 113 |
+
'Math-500': 'Math-500',
|
| 114 |
+
'AIME': 'AIME',
|
| 115 |
+
'MMLU-Pro': 'MMLU-Pro',
|
| 116 |
+
'LiveCodeBench': 'LiveCodeBench',
|
| 117 |
+
'HumanEval': 'HumanEval',
|
| 118 |
+
'GQPA-Diamond': 'GQPA-Diamond',
|
| 119 |
+
'IFEval': 'IFEval',
|
| 120 |
}
|
| 121 |
df = df[list(columns.keys())].rename(columns=columns)
|
| 122 |
return df
|
| 123 |
|
| 124 |
+
|
| 125 |
def filter_table(df, size_ranges, model_types):
|
| 126 |
filtered_df = df.copy()
|
| 127 |
+
|
| 128 |
+
# Filter by size
|
| 129 |
if size_ranges:
|
| 130 |
+
|
| 131 |
def get_size_in_B(param):
|
| 132 |
if param == 'N/A':
|
| 133 |
return None
|
|
|
|
| 135 |
return float(param.replace('B', ''))
|
| 136 |
except:
|
| 137 |
return None
|
| 138 |
+
|
| 139 |
+
filtered_df['size_in_B'] = filtered_df['Parameters'].apply(
|
| 140 |
+
get_size_in_B
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
mask = pd.Series(False, index=filtered_df.index)
|
|
|
|
| 144 |
for size_range in size_ranges:
|
| 145 |
if size_range == '<10B':
|
| 146 |
+
mask |= (filtered_df['size_in_B'] < 10) & (
|
| 147 |
+
filtered_df['size_in_B'].notna()
|
| 148 |
+
)
|
| 149 |
elif size_range == '10B-70B':
|
| 150 |
+
mask |= (filtered_df['size_in_B'] >= 10) & (
|
| 151 |
+
filtered_df['size_in_B'] < 70
|
| 152 |
+
)
|
| 153 |
elif size_range == '>70B':
|
| 154 |
mask |= filtered_df['size_in_B'] >= 70
|
| 155 |
elif size_range == 'Unknown':
|
| 156 |
mask |= filtered_df['size_in_B'].isna()
|
| 157 |
+
|
| 158 |
filtered_df = filtered_df[mask]
|
| 159 |
filtered_df.drop('size_in_B', axis=1, inplace=True)
|
| 160 |
+
|
| 161 |
+
# Filter by model type
|
| 162 |
if model_types:
|
| 163 |
type_mask = pd.Series(False, index=filtered_df.index)
|
| 164 |
for model_type in model_types:
|
|
|
|
| 167 |
elif model_type == 'OpenSource':
|
| 168 |
type_mask |= filtered_df['OpenSource'] == 'Yes'
|
| 169 |
filtered_df = filtered_df[type_mask]
|
| 170 |
+
|
| 171 |
return filtered_df
|
| 172 |
|
| 173 |
+
|
| 174 |
def calculate_column_widths(df):
|
| 175 |
+
"""Dynamically calculate column widths based on content length."""
|
| 176 |
column_widths = []
|
| 177 |
+
|
| 178 |
for column in df.columns:
|
| 179 |
+
# Get max length of column name and values
|
| 180 |
header_length = len(str(column))
|
| 181 |
max_content_length = df[column].astype(str).map(len).max()
|
| 182 |
+
|
| 183 |
+
# Use the larger of header or content length
|
| 184 |
+
# Multiply by average character width (approximately 8 pixels)
|
| 185 |
+
# Add padding (20 pixels)
|
| 186 |
+
# Increase the multiplier for header length to ensure it fits
|
| 187 |
width = max(header_length * 10, max_content_length * 8) + 20
|
| 188 |
+
|
| 189 |
+
# Set minimum width (200 pixels)
|
| 190 |
+
width = max(160, width)
|
| 191 |
+
|
| 192 |
+
# Set maximum width (400 pixels) to prevent extremely wide columns
|
| 193 |
+
width = min(400, width)
|
| 194 |
+
|
| 195 |
column_widths.append(width)
|
|
|
|
| 196 |
|
| 197 |
+
return column_widths
|
|
|
|
|
|
|
| 198 |
|
|
|
|
| 199 |
|
| 200 |
def create_interface():
|
| 201 |
+
data_url, update_time = get_latest_data()
|
| 202 |
+
data = load_data(data_url)
|
| 203 |
+
df = build_main_table(data)
|
| 204 |
+
title = gr.Markdown(get_leaderboard_title(update_time))
|
|
|
|
| 205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
with gr.Blocks() as demo:
|
| 207 |
+
title_comp = gr.Markdown(get_leaderboard_title(update_time))
|
| 208 |
+
|
| 209 |
with gr.Tabs() as tabs:
|
| 210 |
with gr.TabItem("🏅 Main Leaderboard", elem_id='main'):
|
| 211 |
gr.Markdown(MAIN_LEADERBOARD_DESCRIPTION)
|
| 212 |
+
|
| 213 |
with gr.Row():
|
| 214 |
with gr.Column():
|
| 215 |
size_filter = gr.CheckboxGroup(
|
|
|
|
| 225 |
label='Model Type',
|
| 226 |
interactive=True,
|
| 227 |
)
|
| 228 |
+
|
| 229 |
with gr.Column():
|
| 230 |
table = gr.DataFrame(
|
| 231 |
+
value=df.sort_values("Average Score", ascending=False),
|
| 232 |
interactive=False,
|
| 233 |
+
wrap=False, # 禁用自动换行
|
| 234 |
+
column_widths=calculate_column_widths(df),
|
| 235 |
)
|
| 236 |
+
|
| 237 |
+
def update_data():
|
| 238 |
+
"""Periodically check for new data and update the interface"""
|
| 239 |
+
while True:
|
| 240 |
+
time.sleep(300) # Check every 5 minutes
|
| 241 |
+
try:
|
| 242 |
+
new_data_url, new_update_time = get_latest_data()
|
| 243 |
+
if new_data_url != data_url:
|
| 244 |
+
new_data = load_data(new_data_url)
|
| 245 |
+
new_df = build_main_table(new_data)
|
| 246 |
+
filtered_df = filter_table(new_df, size_filter.value, type_filter.value)
|
| 247 |
+
title_comp.value = get_leaderboard_title(new_update_time)
|
| 248 |
+
table.value = filtered_df.sort_values("Average Score", ascending=False)
|
| 249 |
+
except Exception as e:
|
| 250 |
+
print(f"Error updating data: {e}")
|
| 251 |
+
continue
|
| 252 |
+
|
| 253 |
+
def update_table(size_ranges, model_types):
|
| 254 |
+
filtered_df = filter_table(df, size_ranges, model_types)
|
| 255 |
+
return filtered_df.sort_values(
|
| 256 |
+
"Average Score", ascending=False
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
size_filter.change(
|
| 260 |
fn=update_table,
|
| 261 |
inputs=[size_filter, type_filter],
|
| 262 |
outputs=table,
|
| 263 |
)
|
| 264 |
+
|
| 265 |
type_filter.change(
|
| 266 |
fn=update_table,
|
| 267 |
inputs=[size_filter, type_filter],
|
| 268 |
outputs=table,
|
| 269 |
)
|
| 270 |
|
| 271 |
+
# Set up periodic data update
|
| 272 |
+
demo.load(update_data)
|
| 273 |
+
|
| 274 |
with gr.Row():
|
| 275 |
with gr.Accordion("Citation", open=False):
|
| 276 |
citation_button = gr.Textbox(
|
|
|
|
| 281 |
|
| 282 |
return demo
|
| 283 |
|
| 284 |
+
|
| 285 |
if __name__ == '__main__':
|
| 286 |
demo = create_interface()
|
| 287 |
+
demo.launch(server_name='0.0.0.0')
|
|
|