Spaces:
Running
Running
| import copy as cp | |
| import json | |
| from collections import defaultdict | |
| from urllib.request import urlopen | |
| import gradio as gr | |
| import numpy as np | |
| import pandas as pd | |
| from meta_data import MMBENCH_FIELDS, META_FIELDS, URL | |
| def listinstr(lst, s): | |
| assert isinstance(lst, list) | |
| for item in lst: | |
| if item in s: | |
| return True | |
| return False | |
| def upper_key(k): | |
| if k == 'ocr': | |
| return 'OCR' | |
| elif '_' in k: | |
| k = k.split('_') | |
| k = [x[0].upper() + x[1:] for x in k] | |
| k = ' '.join(k) | |
| return k | |
| else: | |
| return k | |
| def load_results(): | |
| data = json.loads(urlopen(URL).read()) | |
| names = ['MMBench_TEST_EN_V11', 'MMBench_TEST_CN_V11', 'CCBench', 'MMBench_TEST_EN', 'MMBench_TEST_CN'] | |
| skip_keys = ['Method', 'Parameters', 'Language Model', 'Vision Model', 'Org', 'Time', 'Verified', 'OpenSource', 'key'] | |
| META_MAP = data['META_MAP'] | |
| for n in names: | |
| print(n) | |
| res_map = {x['Method'][0]: {upper_key(k): v for k, v in x.items() if k not in skip_keys} for x in data[n + '_Data']} | |
| for r in res_map: | |
| META_MAP[r][n] = res_map[r] | |
| return META_MAP | |
| def nth_large(val, vals): | |
| return sum([1 for v in vals if v > val]) + 1 | |
| def model_size_flag(sz, FIELDS): | |
| if pd.isna(sz) and 'Unknown' in FIELDS: | |
| return True | |
| if pd.isna(sz): | |
| return False | |
| sz = int(sz) | |
| if '<4B' in FIELDS and sz < 4: | |
| return True | |
| if '4B-10B' in FIELDS and sz >= 4 and sz < 10: | |
| return True | |
| if '10B-20B' in FIELDS and sz >= 10 and sz < 20: | |
| return True | |
| if '20B-40B' in FIELDS and sz >= 20 and sz < 40: | |
| return True | |
| if '>40B' in FIELDS and sz >= 40: | |
| return True | |
| return False | |
| def model_type_flag(line, FIELDS): | |
| if 'Public' in FIELDS and line['OpenSource'] == 'Yes': | |
| return True | |
| if 'Private' in FIELDS and line['OpenSource'] == 'No': | |
| return True | |
| if 'Verified' in FIELDS and line['Verified'] == 'Yes': | |
| return True | |
| return False | |
| def BUILD_L1_DF(results): | |
| check_box = {} | |
| check_box['essential'] = ['Method', 'Org', 'Param (B)', 'Language Model', 'Vision Model'] | |
| # revise there to set default dataset | |
| check_box['required'] = ['MMBench_TEST_V11', 'MMBench_TEST', 'CCBench'] | |
| check_box['avg'] = ['MMBench_TEST_V11', 'MMBench_TEST'] | |
| check_box['all'] = check_box['avg'] + MMBENCH_FIELDS | |
| type_map = defaultdict(lambda: 'number') | |
| type_map['Method'] = 'html' | |
| type_map['Language Model'] = type_map['Vision Model'] = type_map['Org'] = 'html' | |
| type_map['OpenSource'] = type_map['Verified'] = 'str' | |
| check_box['type_map'] = type_map | |
| df = generate_table(results) | |
| return df, check_box | |
| def BUILD_L2_DF(results, dataset): | |
| res = defaultdict(list) | |
| sub = [v for v in results.values() if dataset in v] | |
| assert len(sub) | |
| fields = list(sub[0][dataset].keys()) | |
| non_overall_fields = [x for x in fields if 'Overall' not in x] | |
| overall_fields = [x for x in fields if 'Overall' in x] | |
| for m in results: | |
| item = results[m] | |
| if dataset not in item: | |
| continue | |
| for k in META_FIELDS: | |
| if k == 'Param (B)': | |
| param = item['Parameters'] | |
| res[k].append(float(param.replace('B', '')) if param != '' else None) | |
| elif k == 'Method': | |
| name, url = item['Method'] | |
| res[k].append(f'<a href="{url}">{name}</a>') | |
| else: | |
| s = item[k].replace('\n', '<br>') | |
| s = s.replace(' & ', '<br>') | |
| res[k].append(s) | |
| for d in overall_fields: | |
| res[d].append(float(item[dataset][d])) | |
| for d in non_overall_fields: | |
| res[d].append(float(item[dataset][d])) | |
| df = pd.DataFrame(res) | |
| all_fields = overall_fields + non_overall_fields | |
| # Use the first 5 non-overall fields as required fields | |
| required_fields = overall_fields if len(overall_fields) else non_overall_fields[:5] | |
| df = df.sort_values('Overall') | |
| df = df.iloc[::-1] | |
| check_box = {} | |
| check_box['essential'] = ['Method', 'Org', 'Param (B)', 'Language Model', 'Vision Model'] | |
| check_box['required'] = required_fields | |
| check_box['all'] = all_fields | |
| type_map = defaultdict(lambda: 'number') | |
| type_map['Method'] = 'html' | |
| type_map['Language Model'] = type_map['Vision Model'] = type_map['Org'] = 'html' | |
| type_map['OpenSource'] = type_map['Verified'] = 'str' | |
| check_box['type_map'] = type_map | |
| return df, check_box | |
| def generate_table(results): | |
| res = defaultdict(list) | |
| for i, m in enumerate(results): | |
| item = results[m] | |
| for k in META_FIELDS: | |
| if k == 'Param (B)': | |
| param = item['Parameters'] | |
| res[k].append(float(param.replace('B', '')) if param != '' else None) | |
| elif k == 'Method': | |
| name, url = item['Method'] | |
| res[k].append(f'<a href="{url}">{name}</a>') | |
| else: | |
| s = item[k].replace('\n', '<br>') | |
| s = s.replace(' & ', '<br>') | |
| res[k].append(s) | |
| for d in ['MMBench_TEST_V11', 'MMBench_TEST_EN_V11', 'MMBench_TEST_CN_V11', 'CCBench', 'MMBench_TEST', 'MMBench_TEST_EN', 'MMBench_TEST_CN']: | |
| key_name = 'Overall' if d != 'OCRBench' else 'Final Score' | |
| # Every Model should have MMBench_V11 results | |
| if d == 'MMBench_TEST_V11': | |
| if 'MMBench_TEST_EN_V11' in item and 'MMBench_TEST_CN_V11' in item: | |
| val = item['MMBench_TEST_EN_V11'][key_name] + item['MMBench_TEST_CN_V11'][key_name] | |
| val = val / 2 | |
| val = float(f'{val:.1f}') | |
| res[d].append(val) | |
| else: | |
| res[d].append(None) | |
| elif d == 'MMBench_TEST': | |
| if 'MMBench_TEST_EN' in item and 'MMBench_TEST_CN' in item: | |
| val = float(item['MMBench_TEST_EN'][key_name]) + float(item['MMBench_TEST_CN'][key_name]) | |
| val = val / 2 | |
| val = float(f'{val:.1f}') | |
| res[d].append(val) | |
| else: | |
| res[d].append(None) | |
| elif d in item: | |
| val = float(item[d][key_name]) | |
| val = float(f'{val:.1f}') | |
| res[d].append(val) | |
| else: | |
| res[d].append(None) | |
| df = pd.DataFrame(res) | |
| df_list = [] | |
| for k in [ | |
| 'MMBench_TEST_V11', 'MMBench_TEST', | |
| 'MMBench_TEST_EN_V11', 'MMBench_TEST_CN_V11', | |
| 'MMBench_TEST_EN', 'MMBench_TEST_CN', 'CCBench' | |
| ]: | |
| if len(df) == 0: | |
| break | |
| valid, missing = df[~pd.isna(df[k])], df[pd.isna(df[k])] | |
| valid = valid.sort_values(k) | |
| valid = valid.iloc[::-1] | |
| df_list.append(valid) | |
| df = missing | |
| df = pd.concat(df_list) | |
| return df | |