Spaces:
Running
Running
| from langchain.chains import LLMMathChain | |
| from langflow.base.chains.model import LCChainComponent | |
| from langflow.field_typing import Message | |
| from langflow.inputs import HandleInput, MultilineInput | |
| from langflow.template import Output | |
| class LLMMathChainComponent(LCChainComponent): | |
| display_name = "LLMMathChain" | |
| description = "Chain that interprets a prompt and executes python code to do math." | |
| documentation = "https://python.langchain.com/docs/modules/chains/additional/llm_math" | |
| name = "LLMMathChain" | |
| legacy: bool = True | |
| icon = "LangChain" | |
| inputs = [ | |
| MultilineInput( | |
| name="input_value", | |
| display_name="Input", | |
| info="The input value to pass to the chain.", | |
| required=True, | |
| ), | |
| HandleInput( | |
| name="llm", | |
| display_name="Language Model", | |
| input_types=["LanguageModel"], | |
| required=True, | |
| ), | |
| ] | |
| outputs = [Output(display_name="Text", name="text", method="invoke_chain")] | |
| def invoke_chain(self) -> Message: | |
| chain = LLMMathChain.from_llm(llm=self.llm) | |
| response = chain.invoke( | |
| {chain.input_key: self.input_value}, | |
| config={"callbacks": self.get_langchain_callbacks()}, | |
| ) | |
| result = response.get(chain.output_key, "") | |
| result = str(result) | |
| self.status = result | |
| return Message(text=result) | |