Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
change container width param
Browse files
pages/Multimodal_Conversational_Search.py
CHANGED
|
@@ -1,566 +1,232 @@
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import uuid
|
| 3 |
import os
|
| 4 |
-
import re
|
| 5 |
import sys
|
| 6 |
-
|
| 7 |
-
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/RAG")
|
| 8 |
-
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/utilities")
|
| 9 |
import boto3
|
| 10 |
-
import requests
|
| 11 |
-
from boto3 import Session
|
| 12 |
-
import botocore.session
|
| 13 |
import json
|
| 14 |
import random
|
| 15 |
import string
|
| 16 |
-
import rag_DocumentLoader
|
| 17 |
-
import rag_DocumentSearcher
|
| 18 |
import pandas as pd
|
| 19 |
-
from PIL import Image
|
| 20 |
-
import shutil
|
| 21 |
-
import base64
|
| 22 |
-
import time
|
| 23 |
-
import botocore
|
| 24 |
-
from requests_aws4auth import AWS4Auth
|
| 25 |
-
import colpali
|
| 26 |
from requests.auth import HTTPBasicAuth
|
| 27 |
-
import warnings
|
| 28 |
|
|
|
|
| 29 |
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
)
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
USER_ICON = "images/user.png"
|
| 41 |
AI_ICON = "images/opensearch-twitter-card.png"
|
| 42 |
REGENERATE_ICON = "images/regenerate.png"
|
| 43 |
-
s3_bucket_ = "pdf-repo-uploads"
|
| 44 |
-
#"pdf-repo-uploads"
|
| 45 |
-
polly_client = boto3.client('polly',aws_access_key_id=st.secrets['user_access_key'],
|
| 46 |
-
aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1')
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
# Check if the user ID is already stored in the session state
|
| 50 |
-
if 'user_id' in st.session_state:
|
| 51 |
-
user_id = st.session_state['user_id']
|
| 52 |
-
#print(f"User ID: {user_id}")
|
| 53 |
-
|
| 54 |
-
# If the user ID is not yet stored in the session state, generate a random UUID
|
| 55 |
-
else:
|
| 56 |
-
user_id = str(uuid.uuid4())
|
| 57 |
-
st.session_state['user_id'] = user_id
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
if 'session_id' not in st.session_state:
|
| 61 |
-
st.session_state['session_id'] = ""
|
| 62 |
-
|
| 63 |
-
if "chats" not in st.session_state:
|
| 64 |
-
st.session_state.chats = [
|
| 65 |
-
{
|
| 66 |
-
'id': 0,
|
| 67 |
-
'question': '',
|
| 68 |
-
'answer': ''
|
| 69 |
-
}
|
| 70 |
-
]
|
| 71 |
-
|
| 72 |
-
if "questions_" not in st.session_state:
|
| 73 |
-
st.session_state.questions_ = []
|
| 74 |
-
|
| 75 |
-
if "show_columns" not in st.session_state:
|
| 76 |
-
st.session_state.show_columns = False
|
| 77 |
-
|
| 78 |
-
if "answers_" not in st.session_state:
|
| 79 |
-
st.session_state.answers_ = []
|
| 80 |
-
|
| 81 |
-
if "input_index" not in st.session_state:
|
| 82 |
-
st.session_state.input_index = "hpijan2024hometrack"#"globalwarmingnew"#"hpijan2024hometrack_no_img_no_table"
|
| 83 |
-
|
| 84 |
-
if "input_is_rerank" not in st.session_state:
|
| 85 |
-
st.session_state.input_is_rerank = True
|
| 86 |
-
|
| 87 |
-
if "input_is_colpali" not in st.session_state:
|
| 88 |
-
st.session_state.input_is_colpali = False
|
| 89 |
-
|
| 90 |
-
if "input_copali_rerank" not in st.session_state:
|
| 91 |
-
st.session_state.input_copali_rerank = False
|
| 92 |
-
|
| 93 |
-
if "input_table_with_sql" not in st.session_state:
|
| 94 |
-
st.session_state.input_table_with_sql = False
|
| 95 |
-
|
| 96 |
-
if "input_query" not in st.session_state:
|
| 97 |
-
st.session_state.input_query="which city has the highest average housing price in UK ?"#"What is the projected energy percentage from renewable sources in future?"#"Which city in United Kingdom has the highest average housing price ?"#"How many aged above 85 years died due to covid ?"# What is the projected energy from renewable sources ?"
|
| 98 |
-
|
| 99 |
-
if "input_rag_searchType" not in st.session_state:
|
| 100 |
-
st.session_state.input_rag_searchType = ["Vector Search"]
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
region = 'us-east-1'
|
| 105 |
-
bedrock_runtime_client = boto3.client('bedrock-runtime',region_name=region)
|
| 106 |
-
output = []
|
| 107 |
-
service = 'es'
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
st.markdown("""
|
| 110 |
<style>
|
| 111 |
-
[data-testid=column]:nth-of-type(
|
| 112 |
-
|
| 113 |
-
}
|
| 114 |
-
[data-testid=column]:nth-of-type(1) [data-testid=stVerticalBlock]{
|
| 115 |
gap: 0rem;
|
| 116 |
}
|
| 117 |
</style>
|
| 118 |
-
""",unsafe_allow_html=True)
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
credentials = boto3.Session().get_credentials()
|
| 124 |
-
awsauth = HTTPBasicAuth('master',st.secrets['ml_search_demo_api_access'])
|
| 125 |
-
service = 'es'
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
# if "input_searchType" not in st.session_state:
|
| 131 |
-
# st.session_state.input_searchType = "Conversational Search (RAG)"
|
| 132 |
-
|
| 133 |
-
# if "input_temperature" not in st.session_state:
|
| 134 |
-
# st.session_state.input_temperature = "0.001"
|
| 135 |
-
|
| 136 |
-
# if "input_topK" not in st.session_state:
|
| 137 |
-
# st.session_state.input_topK = 200
|
| 138 |
-
|
| 139 |
-
# if "input_topP" not in st.session_state:
|
| 140 |
-
# st.session_state.input_topP = 0.95
|
| 141 |
-
|
| 142 |
-
# if "input_maxTokens" not in st.session_state:
|
| 143 |
-
# st.session_state.input_maxTokens = 1024
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
def write_logo():
|
| 147 |
-
col1, col2, col3 = st.columns([5, 1, 5])
|
| 148 |
-
with col2:
|
| 149 |
-
st.image(AI_ICON, use_container_width='always')
|
| 150 |
|
|
|
|
| 151 |
def write_top_bar():
|
| 152 |
-
col1, col2 = st.columns([77,23])
|
| 153 |
with col1:
|
| 154 |
-
st.
|
| 155 |
-
st.header("Chat with your data",divider='rainbow')
|
| 156 |
-
|
| 157 |
-
#st.image(AI_ICON, use_container_width='always')
|
| 158 |
-
|
| 159 |
with col2:
|
| 160 |
-
st.write("")
|
| 161 |
-
st.write("")
|
| 162 |
clear = st.button("Clear")
|
| 163 |
-
st.write("")
|
| 164 |
-
st.write("")
|
| 165 |
return clear
|
| 166 |
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
if clear:
|
| 170 |
st.session_state.questions_ = []
|
| 171 |
st.session_state.answers_ = []
|
| 172 |
-
st.session_state.input_query=""
|
| 173 |
-
# st.session_state.input_searchType="Conversational Search (RAG)"
|
| 174 |
-
# st.session_state.input_temperature = "0.001"
|
| 175 |
-
# st.session_state.input_topK = 200
|
| 176 |
-
# st.session_state.input_topP = 0.95
|
| 177 |
-
# st.session_state.input_maxTokens = 1024
|
| 178 |
-
|
| 179 |
|
|
|
|
| 180 |
def handle_input():
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
return ""
|
| 186 |
-
inputs = {}
|
| 187 |
-
for key in st.session_state:
|
| 188 |
-
if key.startswith('input_'):
|
| 189 |
-
inputs[key.removeprefix('input_')] = st.session_state[key]
|
| 190 |
st.session_state.inputs_ = inputs
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
#st.write(inputs)
|
| 196 |
-
question_with_id = {
|
| 197 |
'question': inputs["query"],
|
| 198 |
'id': len(st.session_state.questions_)
|
| 199 |
-
}
|
| 200 |
-
|
| 201 |
-
if
|
| 202 |
out_ = colpali.colpali_search_rerank(st.session_state.input_query)
|
| 203 |
-
#print(out_)
|
| 204 |
else:
|
| 205 |
-
out_ = rag_DocumentSearcher.query_(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
st.session_state.answers_.append({
|
| 207 |
'answer': out_['text'],
|
| 208 |
-
'source':out_['source'],
|
| 209 |
'id': len(st.session_state.questions_),
|
| 210 |
'image': out_['image'],
|
| 211 |
-
'table':out_['table']
|
| 212 |
})
|
| 213 |
-
st.session_state.input_query=""
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
# search_type = st.selectbox('Select the Search type',
|
| 218 |
-
# ('Conversational Search (RAG)',
|
| 219 |
-
# 'OpenSearch vector search',
|
| 220 |
-
# 'LLM Text Generation'
|
| 221 |
-
# ),
|
| 222 |
-
|
| 223 |
-
# key = 'input_searchType',
|
| 224 |
-
# help = "Select the type of retriever\n1. Conversational Search (Recommended) - This will include both the OpenSearch and LLM in the retrieval pipeline \n (note: This will put opensearch response as context to LLM to answer) \n2. OpenSearch vector search - This will put only OpenSearch's vector search in the pipeline, \n(Warning: this will lead to unformatted results )\n3. LLM Text Generation - This will include only LLM in the pipeline, \n(Warning: This will give hallucinated and out of context answers_)"
|
| 225 |
-
# )
|
| 226 |
-
|
| 227 |
-
# col1, col2, col3, col4 = st.columns(4)
|
| 228 |
-
|
| 229 |
-
# with col1:
|
| 230 |
-
# st.text_input('Temperature', value = "0.001", placeholder='LLM Temperature', key = 'input_temperature',help = "Set the temperature of the Large Language model. \n Note: 1. Set this to values lower to 1 in the order of 0.001, 0.0001, such low values reduces hallucination and creativity in the LLM response; 2. This applies only when LLM is a part of the retriever pipeline")
|
| 231 |
-
# with col2:
|
| 232 |
-
# st.number_input('Top K', value = 200, placeholder='Top K', key = 'input_topK', step = 50, help = "This limits the LLM's predictions to the top k most probable tokens at each step of generation, this applies only when LLM is a prt of the retriever pipeline")
|
| 233 |
-
# with col3:
|
| 234 |
-
# st.number_input('Top P', value = 0.95, placeholder='Top P', key = 'input_topP', step = 0.05, help = "This sets a threshold probability and selects the top tokens whose cumulative probability exceeds the threshold while the tokens are generated by the LLM")
|
| 235 |
-
# with col4:
|
| 236 |
-
# st.number_input('Max Output Tokens', value = 500, placeholder='Max Output Tokens', key = 'input_maxTokens', step = 100, help = "This decides the total number of tokens generated as the final response. Note: Values greater than 1000 takes longer response time")
|
| 237 |
-
|
| 238 |
-
# st.markdown('---')
|
| 239 |
-
|
| 240 |
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
with col1:
|
| 245 |
-
st.image(USER_ICON, use_container_width=
|
| 246 |
with col2:
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
-
def render_answer(question,answer,index,res_img):
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
col1, col2, col_3 = st.columns([4,74,22])
|
| 257 |
with col1:
|
| 258 |
-
st.image(AI_ICON, use_container_width=
|
|
|
|
| 259 |
with col2:
|
| 260 |
-
|
| 261 |
-
st.write(
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
# if(index == len(st.session_state.questions_)):
|
| 291 |
-
# st.write_stream(stream_)
|
| 292 |
-
# if(isinstance(st.session_state.answers_[index-1]['answer'],botocore.eventstream.EventStream)):
|
| 293 |
-
# st.session_state.answers_[index-1]['answer'] = "".join(output)
|
| 294 |
-
# else:
|
| 295 |
-
# st.write(ans_)
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
polly_response = polly_client.synthesize_speech(VoiceId='Joanna',
|
| 299 |
-
OutputFormat='ogg_vorbis',
|
| 300 |
-
Text = ans_,
|
| 301 |
-
Engine = 'neural')
|
| 302 |
-
|
| 303 |
-
audio_col1, audio_col2 = st.columns([50,50])
|
| 304 |
-
with audio_col1:
|
| 305 |
-
st.audio(polly_response['AudioStream'].read(), format="audio/ogg")
|
| 306 |
-
rdn_key_1 = ''.join([random.choice(string.ascii_letters)
|
| 307 |
-
for _ in range(10)])
|
| 308 |
-
def show_maxsim():
|
| 309 |
-
st.session_state.show_columns = True
|
| 310 |
-
st.session_state.maxSimImages = colpali.img_highlight(st.session_state.top_img, st.session_state.query_token_vectors, st.session_state.query_tokens)
|
| 311 |
-
handle_input()
|
| 312 |
-
with placeholder.container():
|
| 313 |
-
render_all()
|
| 314 |
-
if(st.session_state.input_is_colpali):
|
| 315 |
-
st.button("Show similarity map",key=rdn_key_1,on_click = show_maxsim)
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
#st.markdown("<div style='font-size:18px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;border-radius: 10px;'>"+ans_+"</div>", unsafe_allow_html = True)
|
| 320 |
-
#st.markdown("<div style='color:#e28743';padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'><b>Relevant images from the document :</b></div>", unsafe_allow_html = True)
|
| 321 |
-
#st.write("")
|
| 322 |
-
colu1,colu2,colu3 = st.columns([4,82,20])
|
| 323 |
-
with colu2:
|
| 324 |
-
with st.expander("Relevant Sources:"):
|
| 325 |
-
with st.container():
|
| 326 |
-
if(len(res_img)>0):
|
| 327 |
-
#with st.expander("Images:"):
|
| 328 |
-
|
| 329 |
-
idx = 0
|
| 330 |
-
print(res_img)
|
| 331 |
-
for i in range(0,len(res_img)):
|
| 332 |
-
|
| 333 |
-
if(st.session_state.input_is_colpali):
|
| 334 |
-
if(st.session_state.show_columns == True):
|
| 335 |
-
cols_per_row = 3
|
| 336 |
-
st.session_state.image_placeholder=st.empty()
|
| 337 |
-
with st.session_state.image_placeholder.container():
|
| 338 |
-
row = st.columns(cols_per_row)
|
| 339 |
-
for j, item in enumerate(res_img[i:i+cols_per_row]):
|
| 340 |
-
with row[j]:
|
| 341 |
-
st.image(item['file'])
|
| 342 |
-
|
| 343 |
-
else:
|
| 344 |
-
st.session_state.image_placeholder = st.empty()
|
| 345 |
-
with st.session_state.image_placeholder.container():
|
| 346 |
-
col3_,col4_,col5_ = st.columns([33,33,33])
|
| 347 |
-
with col3_:
|
| 348 |
-
st.image(res_img[i]['file'])
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
else:
|
| 355 |
-
if(res_img[i]['file'].lower()!='none' and idx < 1):
|
| 356 |
-
col3,col4,col5 = st.columns([33,33,33])
|
| 357 |
-
cols = [col3,col4]
|
| 358 |
-
img = res_img[i]['file'].split(".")[0]
|
| 359 |
-
caption = res_img[i]['caption']
|
| 360 |
-
|
| 361 |
-
with cols[idx]:
|
| 362 |
-
|
| 363 |
-
st.image(parent_dirname+"/figures/"+st.session_state.input_index+"/"+img+".jpg")
|
| 364 |
-
#st.write(caption)
|
| 365 |
-
idx = idx+1
|
| 366 |
-
if(st.session_state.show_columns == True):
|
| 367 |
-
st.session_state.show_columns = False
|
| 368 |
-
#st.markdown("<div style='color:#e28743';padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'><b>Sources from the document:</b></div>", unsafe_allow_html = True)
|
| 369 |
-
if(len(answer["table"] )>0):
|
| 370 |
-
#with st.expander("Table:"):
|
| 371 |
-
df = pd.read_csv(answer["table"][0]['name'],skipinitialspace = True, on_bad_lines='skip',delimiter='`')
|
| 372 |
df.fillna(method='pad', inplace=True)
|
| 373 |
st.table(df)
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
for _ in range(10)])
|
| 383 |
-
# rdn_key_1 = ''.join([random.choice(string.ascii_letters)
|
| 384 |
-
# for _ in range(10)])
|
| 385 |
-
currentValue = ''.join(st.session_state.input_rag_searchType)+str(st.session_state.input_is_rerank)+str(st.session_state.input_table_with_sql)+st.session_state.input_index
|
| 386 |
-
oldValue = ''.join(st.session_state.inputs_["rag_searchType"])+str(st.session_state.inputs_["is_rerank"])+str(st.session_state.inputs_["table_with_sql"])+str(st.session_state.inputs_["index"])
|
| 387 |
-
def on_button_click():
|
| 388 |
-
if(currentValue!=oldValue or 1==1):
|
| 389 |
-
st.session_state.input_query = st.session_state.questions_[-1]["question"]
|
| 390 |
-
st.session_state.answers_.pop()
|
| 391 |
-
st.session_state.questions_.pop()
|
| 392 |
-
|
| 393 |
-
handle_input()
|
| 394 |
-
with placeholder.container():
|
| 395 |
-
render_all()
|
| 396 |
-
# def show_maxsim():
|
| 397 |
-
# st.session_state.show_columns = True
|
| 398 |
-
# st.session_state.maxSimImages = colpali.img_highlight(st.session_state.top_img, st.session_state.query_token_vectors, st.session_state.query_tokens)
|
| 399 |
-
# handle_input()
|
| 400 |
-
# with placeholder.container():
|
| 401 |
-
# render_all()
|
| 402 |
-
if("currentValue" in st.session_state):
|
| 403 |
-
del st.session_state["currentValue"]
|
| 404 |
-
|
| 405 |
-
try:
|
| 406 |
-
del regenerate
|
| 407 |
-
except:
|
| 408 |
-
pass
|
| 409 |
-
placeholder__ = st.empty()
|
| 410 |
-
placeholder__.button("🔄",key=rdn_key,on_click=on_button_click)
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
#Each answer will have context of the question asked in order to associate the provided feedback with the respective question
|
| 414 |
-
def write_chat_message(md, q,index):
|
| 415 |
-
if(st.session_state.show_columns):
|
| 416 |
-
res_img = st.session_state.maxSimImages
|
| 417 |
-
else:
|
| 418 |
-
res_img = md['image']
|
| 419 |
-
chat = st.container()
|
| 420 |
-
with chat:
|
| 421 |
-
render_answer(q,md,index,res_img)
|
| 422 |
-
|
| 423 |
-
def render_all():
|
| 424 |
-
index = 0
|
| 425 |
-
for (q, a) in zip(st.session_state.questions_, st.session_state.answers_):
|
| 426 |
-
index = index +1
|
| 427 |
-
|
| 428 |
write_user_message(q)
|
| 429 |
-
write_chat_message(a, q,index)
|
| 430 |
|
|
|
|
| 431 |
placeholder = st.empty()
|
| 432 |
with placeholder.container():
|
| 433 |
-
|
| 434 |
|
| 435 |
-
|
| 436 |
-
col_2, col_3 = st.columns([75,20])
|
| 437 |
with col_2:
|
| 438 |
-
|
| 439 |
-
input = st.text_input( "Ask here",label_visibility = "collapsed",key="input_query")
|
| 440 |
with col_3:
|
| 441 |
-
|
| 442 |
-
|
|
|
|
| 443 |
with st.sidebar:
|
| 444 |
st.page_link("app.py", label=":orange[Home]", icon="🏠")
|
| 445 |
st.subheader(":blue[Sample Data]")
|
| 446 |
-
coln_1,coln_2 = st.columns([70,30])
|
| 447 |
with coln_1:
|
| 448 |
-
|
| 449 |
with coln_2:
|
| 450 |
-
st.markdown("<p style='font-size:15px'>Preview file</p>",unsafe_allow_html=True)
|
| 451 |
st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/HPI-Jan-2024-Hometrack.pdf)")
|
| 452 |
st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/global_warming.pdf)")
|
| 453 |
st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/covid19_ie.pdf)")
|
| 454 |
-
st.markdown("""
|
| 455 |
-
<style>
|
| 456 |
-
[data-testid=column]:nth-of-type(2) [data-testid=stVerticalBlock]{
|
| 457 |
-
gap: 0rem;
|
| 458 |
-
}
|
| 459 |
-
[data-testid=column]:nth-of-type(1) [data-testid=stVerticalBlock]{
|
| 460 |
-
gap: 0rem;
|
| 461 |
-
}
|
| 462 |
-
</style>
|
| 463 |
-
""",unsafe_allow_html=True)
|
| 464 |
-
with st.expander("Sample questions:"):
|
| 465 |
-
st.markdown("<span style = 'color:#FF9900;'>UK Housing</span> - which city has the highest average housing price in UK ?",unsafe_allow_html=True)
|
| 466 |
-
st.markdown("<span style = 'color:#FF9900;'>Global Warming stats</span> - What is the projected energy percentage from renewable sources in future?",unsafe_allow_html=True)
|
| 467 |
-
st.markdown("<span style = 'color:#FF9900;'>Covid19 impacts</span> - How many aged above 85 years died due to covid ?",unsafe_allow_html=True)
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
#st.subheader(":blue[Your multi-modal documents]")
|
| 471 |
-
# pdf_doc_ = st.file_uploader(
|
| 472 |
-
# "Upload your PDFs here and click on 'Process'", accept_multiple_files=False)
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
# pdf_docs = [pdf_doc_]
|
| 476 |
-
# if st.button("Process"):
|
| 477 |
-
# with st.spinner("Processing"):
|
| 478 |
-
# if os.path.isdir(parent_dirname+"/pdfs") == False:
|
| 479 |
-
# os.mkdir(parent_dirname+"/pdfs")
|
| 480 |
-
|
| 481 |
-
# for pdf_doc in pdf_docs:
|
| 482 |
-
# print(type(pdf_doc))
|
| 483 |
-
# pdf_doc_name = (pdf_doc.name).replace(" ","_")
|
| 484 |
-
# with open(os.path.join(parent_dirname+"/pdfs",pdf_doc_name),"wb") as f:
|
| 485 |
-
# f.write(pdf_doc.getbuffer())
|
| 486 |
-
|
| 487 |
-
# request_ = { "bucket": s3_bucket_,"key": pdf_doc_name}
|
| 488 |
-
# # if(st.session_state.input_copali_rerank):
|
| 489 |
-
# # copali.process_doc(request_)
|
| 490 |
-
# # else:
|
| 491 |
-
# rag_DocumentLoader.load_docs(request_)
|
| 492 |
-
# print('lambda done')
|
| 493 |
-
# st.success('you can start searching on your PDF')
|
| 494 |
-
|
| 495 |
-
############## haystach demo temporary addition ############
|
| 496 |
-
# st.subheader(":blue[Multimodality]")
|
| 497 |
-
# colu1,colu2 = st.columns([50,50])
|
| 498 |
-
# with colu1:
|
| 499 |
-
# in_images = st.toggle('Images', key = 'in_images', disabled = False)
|
| 500 |
-
# with colu2:
|
| 501 |
-
# in_tables = st.toggle('Tables', key = 'in_tables', disabled = False)
|
| 502 |
-
# if(in_tables):
|
| 503 |
-
# st.session_state.input_table_with_sql = True
|
| 504 |
-
# else:
|
| 505 |
-
# st.session_state.input_table_with_sql = False
|
| 506 |
-
|
| 507 |
-
############## haystach demo temporary addition ############
|
| 508 |
-
#if(pdf_doc_ is None or pdf_doc_ == ""):
|
| 509 |
-
if(index_select == "Global Warming stats"):
|
| 510 |
-
st.session_state.input_index = "globalwarming"
|
| 511 |
-
if(index_select == "Covid19 impacts on Ireland"):
|
| 512 |
-
st.session_state.input_index = "covid19ie"#"choosetheknnalgorithmforyourbillionscaleusecasewithopensearchawsbigdatablog"
|
| 513 |
-
if(index_select == "BEIR"):
|
| 514 |
-
st.session_state.input_index = "2104"
|
| 515 |
-
if(index_select == "UK Housing"):
|
| 516 |
-
st.session_state.input_index = "hpijan2024hometrack"
|
| 517 |
-
|
| 518 |
-
# custom_index = st.text_input("If uploaded the file already, enter the original file name", value = "")
|
| 519 |
-
# if(custom_index!=""):
|
| 520 |
-
# st.session_state.input_index = re.sub('[^A-Za-z0-9]+', '', (custom_index.lower().replace(".pdf","").split("/")[-1].split(".")[0]).lower())
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
st.subheader(":blue[Retriever]")
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
'Vector Search',
|
| 528 |
-
'Sparse Search',
|
| 529 |
-
],
|
| 530 |
-
['Vector Search'],
|
| 531 |
-
|
| 532 |
-
key = 'input_rag_searchType',
|
| 533 |
-
help = "Select the type of Search, adding more than one search type will activate hybrid search"#\n1. Conversational Search (Recommended) - This will include both the OpenSearch and LLM in the retrieval pipeline \n (note: This will put opensearch response as context to LLM to answer) \n2. OpenSearch vector search - This will put only OpenSearch's vector search in the pipeline, \n(Warning: this will lead to unformatted results )\n3. LLM Text Generation - This will include only LLM in the pipeline, \n(Warning: This will give hallucinated and out of context answers)"
|
| 534 |
-
)
|
| 535 |
-
|
| 536 |
-
re_rank = st.checkbox('Re-rank results', key = 'input_re_rank', disabled = False, value = True, help = "Checking this box will re-rank the results using a cross-encoder model")
|
| 537 |
-
|
| 538 |
-
if(re_rank):
|
| 539 |
-
st.session_state.input_is_rerank = True
|
| 540 |
-
else:
|
| 541 |
-
st.session_state.input_is_rerank = False
|
| 542 |
-
|
| 543 |
st.subheader(":blue[Multi-vector retrieval]")
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
|
|
|
|
|
|
|
|
|
| 549 |
st.session_state.input_is_colpali = True
|
| 550 |
-
#st.session_state.input_query = ""
|
| 551 |
else:
|
| 552 |
st.session_state.input_is_colpali = False
|
| 553 |
-
|
| 554 |
with st.expander("Sample questions for Colpali retriever:"):
|
| 555 |
-
st.write("
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
# else:
|
| 563 |
-
# st.session_state.input_copali_rerank = False
|
| 564 |
-
|
| 565 |
|
| 566 |
-
|
|
|
|
| 1 |
+
# Streamlit app: Chat with PDFs using OpenSearch, RAG, and ColPali
|
| 2 |
+
|
| 3 |
import streamlit as st
|
| 4 |
import uuid
|
| 5 |
import os
|
|
|
|
| 6 |
import sys
|
| 7 |
+
import warnings
|
|
|
|
|
|
|
| 8 |
import boto3
|
|
|
|
|
|
|
|
|
|
| 9 |
import json
|
| 10 |
import random
|
| 11 |
import string
|
|
|
|
|
|
|
| 12 |
import pandas as pd
|
| 13 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
from requests.auth import HTTPBasicAuth
|
|
|
|
| 15 |
|
| 16 |
+
# Suppress Streamlit deprecation warnings
|
| 17 |
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
| 18 |
|
| 19 |
+
# Add necessary module paths
|
| 20 |
+
base_path = "/".join(os.path.realpath(__file__).split("/")[:-2])
|
| 21 |
+
sys.path.insert(1, f"{base_path}/semantic_search")
|
| 22 |
+
sys.path.insert(1, f"{base_path}/RAG")
|
| 23 |
+
sys.path.insert(1, f"{base_path}/utilities")
|
| 24 |
|
| 25 |
+
# Local modules
|
| 26 |
+
import rag_DocumentLoader
|
| 27 |
+
import rag_DocumentSearcher
|
| 28 |
+
import colpali
|
| 29 |
|
| 30 |
+
# AWS & OpenSearch setup
|
| 31 |
+
region = 'us-east-1'
|
| 32 |
+
s3_bucket_ = "pdf-repo-uploads"
|
| 33 |
+
bedrock_runtime_client = boto3.client('bedrock-runtime', region_name=region)
|
| 34 |
+
polly_client = boto3.client(
|
| 35 |
+
'polly',
|
| 36 |
+
aws_access_key_id=st.secrets['user_access_key'],
|
| 37 |
+
aws_secret_access_key=st.secrets['user_secret_key'],
|
| 38 |
+
region_name=region
|
| 39 |
)
|
| 40 |
+
credentials = boto3.Session().get_credentials()
|
| 41 |
+
awsauth = HTTPBasicAuth('master', st.secrets['ml_search_demo_api_access'])
|
| 42 |
+
|
| 43 |
+
# App configuration
|
| 44 |
+
st.set_page_config(layout="wide", page_icon="images/opensearch_mark_default.png")
|
| 45 |
+
parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[:-1])
|
| 46 |
USER_ICON = "images/user.png"
|
| 47 |
AI_ICON = "images/opensearch-twitter-card.png"
|
| 48 |
REGENERATE_ICON = "images/regenerate.png"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
# Session state setup
|
| 51 |
+
if 'user_id' not in st.session_state:
|
| 52 |
+
st.session_state['user_id'] = str(uuid.uuid4())
|
| 53 |
+
|
| 54 |
+
st.session_state.setdefault('session_id', "")
|
| 55 |
+
st.session_state.setdefault('chats', [{'id': 0, 'question': '', 'answer': ''}])
|
| 56 |
+
st.session_state.setdefault('questions_', [])
|
| 57 |
+
st.session_state.setdefault('answers_', [])
|
| 58 |
+
st.session_state.setdefault('show_columns', False)
|
| 59 |
+
st.session_state.setdefault('input_index', "hpijan2024hometrack")
|
| 60 |
+
st.session_state.setdefault('input_is_rerank', True)
|
| 61 |
+
st.session_state.setdefault('input_is_colpali', False)
|
| 62 |
+
st.session_state.setdefault('input_copali_rerank', False)
|
| 63 |
+
st.session_state.setdefault('input_table_with_sql', False)
|
| 64 |
+
st.session_state.setdefault('input_query', "which city has the highest average housing price in UK ?")
|
| 65 |
+
st.session_state.setdefault('input_rag_searchType', ["Vector Search"])
|
| 66 |
+
|
| 67 |
+
# Custom styling
|
| 68 |
st.markdown("""
|
| 69 |
<style>
|
| 70 |
+
[data-testid=column]:nth-of-type(1) [data-testid=stVerticalBlock],
|
| 71 |
+
[data-testid=column]:nth-of-type(2) [data-testid=stVerticalBlock] {
|
|
|
|
|
|
|
| 72 |
gap: 0rem;
|
| 73 |
}
|
| 74 |
</style>
|
| 75 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
# Top bar with app logo and clear button
|
| 78 |
def write_top_bar():
|
| 79 |
+
col1, col2 = st.columns([77, 23])
|
| 80 |
with col1:
|
| 81 |
+
st.header("Chat with your data", divider='rainbow')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
with col2:
|
|
|
|
|
|
|
| 83 |
clear = st.button("Clear")
|
| 84 |
+
st.write("") # spacing
|
|
|
|
| 85 |
return clear
|
| 86 |
|
| 87 |
+
# Reset inputs when Clear is clicked
|
| 88 |
+
if write_top_bar():
|
|
|
|
| 89 |
st.session_state.questions_ = []
|
| 90 |
st.session_state.answers_ = []
|
| 91 |
+
st.session_state.input_query = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
+
# Handle user query submission
|
| 94 |
def handle_input():
|
| 95 |
+
if st.session_state.input_query == '':
|
| 96 |
+
return
|
| 97 |
+
|
| 98 |
+
inputs = {key.removeprefix('input_'): st.session_state[key] for key in st.session_state if key.startswith('input_')}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
st.session_state.inputs_ = inputs
|
| 100 |
+
|
| 101 |
+
st.session_state.questions_.append({
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
'question': inputs["query"],
|
| 103 |
'id': len(st.session_state.questions_)
|
| 104 |
+
})
|
| 105 |
+
|
| 106 |
+
if st.session_state.input_is_colpali:
|
| 107 |
out_ = colpali.colpali_search_rerank(st.session_state.input_query)
|
|
|
|
| 108 |
else:
|
| 109 |
+
out_ = rag_DocumentSearcher.query_(
|
| 110 |
+
awsauth,
|
| 111 |
+
inputs,
|
| 112 |
+
st.session_state['session_id'],
|
| 113 |
+
st.session_state.input_rag_searchType
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
st.session_state.answers_.append({
|
| 117 |
'answer': out_['text'],
|
| 118 |
+
'source': out_['source'],
|
| 119 |
'id': len(st.session_state.questions_),
|
| 120 |
'image': out_['image'],
|
| 121 |
+
'table': out_['table']
|
| 122 |
})
|
| 123 |
+
st.session_state.input_query = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
+
# Display user message block
|
| 126 |
+
def write_user_message(msg):
|
| 127 |
+
col1, col2 = st.columns([3, 97])
|
| 128 |
with col1:
|
| 129 |
+
st.image(USER_ICON, use_container_width=True)
|
| 130 |
with col2:
|
| 131 |
+
st.markdown(
|
| 132 |
+
f"<div style='color:#e28743;font-size:18px;padding:3px 7px;border-radius:10px;font-style:italic;'>{msg['question']}</div>",
|
| 133 |
+
unsafe_allow_html=True
|
| 134 |
+
)
|
| 135 |
|
| 136 |
+
# Render assistant answer block with optional images and tables
|
| 137 |
+
def write_chat_message(response, question, index):
|
| 138 |
+
col1, col2, col3 = st.columns([4, 74, 22])
|
| 139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
with col1:
|
| 141 |
+
st.image(AI_ICON, use_container_width=True)
|
| 142 |
+
|
| 143 |
with col2:
|
| 144 |
+
answer_text = response['answer']
|
| 145 |
+
st.write(answer_text)
|
| 146 |
+
|
| 147 |
+
polly_response = polly_client.synthesize_speech(
|
| 148 |
+
VoiceId='Joanna', OutputFormat='ogg_vorbis', Text=answer_text, Engine='neural')
|
| 149 |
+
st.audio(polly_response['AudioStream'].read(), format="audio/ogg")
|
| 150 |
+
|
| 151 |
+
if st.session_state.input_is_colpali:
|
| 152 |
+
if st.button("Show similarity map", key=f"simmap_{index}"):
|
| 153 |
+
st.session_state.show_columns = True
|
| 154 |
+
st.session_state.maxSimImages = colpali.img_highlight(
|
| 155 |
+
st.session_state.top_img,
|
| 156 |
+
st.session_state.query_token_vectors,
|
| 157 |
+
st.session_state.query_tokens
|
| 158 |
+
)
|
| 159 |
+
handle_input()
|
| 160 |
+
with placeholder.container():
|
| 161 |
+
render_all()
|
| 162 |
+
|
| 163 |
+
with st.expander("Relevant Sources"):
|
| 164 |
+
for img in response.get('image', []):
|
| 165 |
+
if isinstance(img, dict) and 'file' in img:
|
| 166 |
+
st.image(img['file'])
|
| 167 |
+
|
| 168 |
+
for tbl in response.get('table', []):
|
| 169 |
+
try:
|
| 170 |
+
df = pd.read_csv(tbl['name'], skipinitialspace=True, on_bad_lines='skip', delimiter='`')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
df.fillna(method='pad', inplace=True)
|
| 172 |
st.table(df)
|
| 173 |
+
except Exception as e:
|
| 174 |
+
st.warning(f"Failed to load table: {e}")
|
| 175 |
+
|
| 176 |
+
st.write(response.get("source", ""))
|
| 177 |
+
|
| 178 |
+
# Render all Q&A pairs
|
| 179 |
+
def render_all():
|
| 180 |
+
for index, (q, a) in enumerate(zip(st.session_state.questions_, st.session_state.answers_), start=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
write_user_message(q)
|
| 182 |
+
write_chat_message(a, q, index)
|
| 183 |
|
| 184 |
+
# Placeholder for dynamic rendering
|
| 185 |
placeholder = st.empty()
|
| 186 |
with placeholder.container():
|
| 187 |
+
render_all()
|
| 188 |
|
| 189 |
+
# Input field for user question
|
| 190 |
+
col_2, col_3 = st.columns([75, 20])
|
| 191 |
with col_2:
|
| 192 |
+
st.text_input("Ask here", label_visibility="collapsed", key="input_query")
|
|
|
|
| 193 |
with col_3:
|
| 194 |
+
st.button("GO", on_click=handle_input, key="play")
|
| 195 |
+
|
| 196 |
+
# Sidebar configuration
|
| 197 |
with st.sidebar:
|
| 198 |
st.page_link("app.py", label=":orange[Home]", icon="🏠")
|
| 199 |
st.subheader(":blue[Sample Data]")
|
| 200 |
+
coln_1, coln_2 = st.columns([70, 30])
|
| 201 |
with coln_1:
|
| 202 |
+
st.radio("Choose one index", ["UK Housing", "Global Warming stats", "Covid19 impacts on Ireland"], key="input_rad_index")
|
| 203 |
with coln_2:
|
| 204 |
+
st.markdown("<p style='font-size:15px'>Preview file</p>", unsafe_allow_html=True)
|
| 205 |
st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/HPI-Jan-2024-Hometrack.pdf)")
|
| 206 |
st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/global_warming.pdf)")
|
| 207 |
st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/covid19_ie.pdf)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
st.subheader(":blue[Retriever]")
|
| 209 |
+
st.multiselect("Select the Retriever(s)", ["Keyword Search", "Vector Search", "Sparse Search"], default=["Vector Search"], key="input_rag_searchType")
|
| 210 |
+
st.checkbox("Re-rank results", key="input_is_rerank", value=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
st.subheader(":blue[Multi-vector retrieval]")
|
| 212 |
+
|
| 213 |
+
colpali_search_rerank = st.checkbox('Try Colpali multi-vector retrieval on the [sample dataset](https://huggingface.co/datasets/vespa-engine/gpfg-QA)',
|
| 214 |
+
key='input_colpali',
|
| 215 |
+
disabled=False,
|
| 216 |
+
value=False,
|
| 217 |
+
help="Checking this box will use colpali as the embedding model and retrieval is performed using multi-vectors followed by re-ranking using MaxSim")
|
| 218 |
+
|
| 219 |
+
if colpali_search_rerank:
|
| 220 |
st.session_state.input_is_colpali = True
|
|
|
|
| 221 |
else:
|
| 222 |
st.session_state.input_is_colpali = False
|
| 223 |
+
|
| 224 |
with st.expander("Sample questions for Colpali retriever:"):
|
| 225 |
+
st.write("""
|
| 226 |
+
1. Proportion of female new hires 2021-2023?
|
| 227 |
+
2. First-half 2021 return on unlisted real estate investments?
|
| 228 |
+
3. Trend of the fund's expected absolute volatility between January 2014 and January 2016?
|
| 229 |
+
4. Fund return percentage in 2017?
|
| 230 |
+
5. Annualized gross return of the fund from 1997 to 2008?
|
| 231 |
+
""")
|
|
|
|
|
|
|
|
|
|
| 232 |
|
|
|