Spaces:
Running
Running
Commit
Β·
db435b4
1
Parent(s):
7f9a235
update
Browse files
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: π
|
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
|
|
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.41
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
app.py
CHANGED
|
@@ -16,13 +16,18 @@ from configs import (
|
|
| 16 |
|
| 17 |
BACKENDS = ["pytorch", "onnxruntime", "openvino", "neural-compressor"]
|
| 18 |
BENCHMARKS = ["inference", "training"]
|
|
|
|
| 19 |
|
| 20 |
|
| 21 |
with gr.Blocks() as demo:
|
| 22 |
# title text
|
| 23 |
-
gr.HTML("<h1 style='text-align: center'>π€ Optimum
|
| 24 |
# explanation text
|
| 25 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
model = gr.Textbox(
|
| 28 |
label="model",
|
|
@@ -36,7 +41,7 @@ with gr.Blocks() as demo:
|
|
| 36 |
device = gr.Dropdown(
|
| 37 |
value="cpu",
|
| 38 |
label="device",
|
| 39 |
-
choices=
|
| 40 |
)
|
| 41 |
experiment = gr.Textbox(
|
| 42 |
label="experiment_name",
|
|
@@ -92,8 +97,9 @@ with gr.Blocks() as demo:
|
|
| 92 |
)
|
| 93 |
|
| 94 |
button = gr.Button(value="Run Benchmark", variant="primary")
|
| 95 |
-
with gr.Accordion(label="
|
| 96 |
-
|
|
|
|
| 97 |
|
| 98 |
button.click(
|
| 99 |
fn=run_benchmark,
|
|
@@ -111,14 +117,8 @@ with gr.Blocks() as demo:
|
|
| 111 |
*inference_config,
|
| 112 |
*training_config,
|
| 113 |
},
|
| 114 |
-
outputs=
|
| 115 |
queue=True,
|
| 116 |
)
|
| 117 |
-
button.click(
|
| 118 |
-
inputs=[],
|
| 119 |
-
outputs=output.parent,
|
| 120 |
-
fn=lambda: gr.update(visible=True),
|
| 121 |
-
)
|
| 122 |
-
|
| 123 |
|
| 124 |
demo.queue().launch()
|
|
|
|
| 16 |
|
| 17 |
BACKENDS = ["pytorch", "onnxruntime", "openvino", "neural-compressor"]
|
| 18 |
BENCHMARKS = ["inference", "training"]
|
| 19 |
+
DEVICES = ["cpu", "cuda"]
|
| 20 |
|
| 21 |
|
| 22 |
with gr.Blocks() as demo:
|
| 23 |
# title text
|
| 24 |
+
gr.HTML("<h1 style='text-align: center'>π€ Optimum-Benchmark UI ποΈ</h1>")
|
| 25 |
# explanation text
|
| 26 |
+
gr.Markdown(
|
| 27 |
+
"This is a demo space of [Optimum-Benchmark](https://github.com/huggingface/optimum-benchmark.git):"
|
| 28 |
+
"<br>A unified multi-backend utility for benchmarking `transformers`, `diffusers`, `peft` and `timm` models with "
|
| 29 |
+
"Optimum's optimizations & quantization, for inference & training, on different backends & hardwares."
|
| 30 |
+
)
|
| 31 |
|
| 32 |
model = gr.Textbox(
|
| 33 |
label="model",
|
|
|
|
| 41 |
device = gr.Dropdown(
|
| 42 |
value="cpu",
|
| 43 |
label="device",
|
| 44 |
+
choices=DEVICES,
|
| 45 |
)
|
| 46 |
experiment = gr.Textbox(
|
| 47 |
label="experiment_name",
|
|
|
|
| 97 |
)
|
| 98 |
|
| 99 |
button = gr.Button(value="Run Benchmark", variant="primary")
|
| 100 |
+
with gr.Accordion(label="", open=True):
|
| 101 |
+
html_output = gr.HTML()
|
| 102 |
+
table_output = gr.Dataframe(visible=False)
|
| 103 |
|
| 104 |
button.click(
|
| 105 |
fn=run_benchmark,
|
|
|
|
| 117 |
*inference_config,
|
| 118 |
*training_config,
|
| 119 |
},
|
| 120 |
+
outputs=[html_output, button, table_output],
|
| 121 |
queue=True,
|
| 122 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
demo.queue().launch()
|
requirements.txt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
-
gradio
|
| 2 |
-
ansi2html
|
| 3 |
optimum-benchmark[onnxruntime,openvino,neural-compressor,diffusers,peft]@git+https://github.com/huggingface/optimum-benchmark.git
|
|
|
|
| 1 |
+
gradio==3.41
|
| 2 |
+
ansi2html==1.8.0
|
| 3 |
optimum-benchmark[onnxruntime,openvino,neural-compressor,diffusers,peft]@git+https://github.com/huggingface/optimum-benchmark.git
|
run.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
-
import pprint
|
| 2 |
import subprocess
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
from ansi2html import Ansi2HTMLConverter
|
| 5 |
|
| 6 |
ansi2html_converter = Ansi2HTMLConverter(inline=True)
|
|
@@ -53,7 +53,8 @@ def run_benchmark(kwargs):
|
|
| 53 |
else:
|
| 54 |
arguments.append(f"{label}={value}")
|
| 55 |
|
| 56 |
-
|
|
|
|
| 57 |
|
| 58 |
# stream subprocess output
|
| 59 |
process = subprocess.Popen(
|
|
@@ -65,15 +66,31 @@ def run_benchmark(kwargs):
|
|
| 65 |
|
| 66 |
ansi_text = ""
|
| 67 |
for ansi_line in iter(process.stdout.readline, ""):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
if "torch.distributed.nn.jit.instantiator" in ansi_line:
|
| 69 |
continue
|
| 70 |
-
#
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
# convert ansi to html
|
| 75 |
html_text = ansi2html_converter.convert(ansi_text)
|
| 76 |
-
# stream html output
|
| 77 |
-
yield html_text
|
| 78 |
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import subprocess
|
| 2 |
import gradio as gr
|
| 3 |
+
import pandas as pd
|
| 4 |
from ansi2html import Ansi2HTMLConverter
|
| 5 |
|
| 6 |
ansi2html_converter = Ansi2HTMLConverter(inline=True)
|
|
|
|
| 53 |
else:
|
| 54 |
arguments.append(f"{label}={value}")
|
| 55 |
|
| 56 |
+
command = " ".join(arguments)
|
| 57 |
+
yield gr.update(value=command), gr.update(interactive=False), gr.update(visible=False)
|
| 58 |
|
| 59 |
# stream subprocess output
|
| 60 |
process = subprocess.Popen(
|
|
|
|
| 66 |
|
| 67 |
ansi_text = ""
|
| 68 |
for ansi_line in iter(process.stdout.readline, ""):
|
| 69 |
+
# stream process output to stdout
|
| 70 |
+
print(ansi_line, end="")
|
| 71 |
+
|
| 72 |
+
# skip torch.distributed.nn.jit.instantiator messages
|
| 73 |
if "torch.distributed.nn.jit.instantiator" in ansi_line:
|
| 74 |
continue
|
| 75 |
+
# if the last message is a download message (contains "Downloading ") then remove it and replace it with a new one
|
| 76 |
+
if "Downloading " in ansi_text and "Downloading " in ansi_line:
|
| 77 |
+
ansi_text = ansi_text.split("\n")[:-2]
|
| 78 |
+
print(ansi_text)
|
| 79 |
+
ansi_text.append(ansi_line)
|
| 80 |
+
ansi_text = "\n".join(ansi_text)
|
| 81 |
+
else:
|
| 82 |
+
# append line to ansi text
|
| 83 |
+
ansi_text += ansi_line
|
| 84 |
# convert ansi to html
|
| 85 |
html_text = ansi2html_converter.convert(ansi_text)
|
| 86 |
+
# stream html output to gradio
|
| 87 |
+
yield gr.update(value=html_text), gr.update(interactive=False), gr.update(visible=False)
|
| 88 |
|
| 89 |
+
# read runs/{experiment_name}/{benchmark}_results.csv
|
| 90 |
+
|
| 91 |
+
table = pd.read_csv(f"runs/{experiment_name}/{benchmark}_results.csv", index_col=0)
|
| 92 |
+
|
| 93 |
+
print(table.to_dict("records"))
|
| 94 |
+
yield gr.update(value=html_text), gr.update(interactive=True), gr.Dataframe.update(
|
| 95 |
+
visible=True, value={"headers": list(table.columns), "data": table.values.tolist()}
|
| 96 |
+
)
|