Spaces:
Running
Running
Commit
ยท
eabde51
1
Parent(s):
a533468
remove tgi
Browse files- app.py +3 -6
- config_store.py +204 -60
app.py
CHANGED
|
@@ -8,14 +8,13 @@ from run import run_benchmark
|
|
| 8 |
from config_store import (
|
| 9 |
get_training_config,
|
| 10 |
get_inference_config,
|
| 11 |
-
get_text_generation_inference_config,
|
| 12 |
get_neural_compressor_config,
|
| 13 |
get_onnxruntime_config,
|
| 14 |
get_openvino_config,
|
| 15 |
get_pytorch_config,
|
| 16 |
)
|
| 17 |
|
| 18 |
-
BACKENDS = ["pytorch", "onnxruntime", "openvino", "neural-compressor"
|
| 19 |
BENCHMARKS = ["inference", "training"]
|
| 20 |
DEVICES = ["cpu", "cuda"]
|
| 21 |
|
|
@@ -25,14 +24,14 @@ with gr.Blocks() as demo:
|
|
| 25 |
gr.HTML("<h1 style='text-align: center'>๐ค Optimum-Benchmark UI ๐๏ธ</h1>")
|
| 26 |
# explanation text
|
| 27 |
gr.Markdown(
|
| 28 |
-
"This is a demo space of [
|
| 29 |
"<br>A unified multi-backend utility for benchmarking `transformers`, `diffusers`, `peft` and `timm` models with "
|
| 30 |
"Optimum's optimizations & quantization, for inference & training, on different backends & hardwares."
|
| 31 |
)
|
| 32 |
|
| 33 |
model = gr.Textbox(
|
| 34 |
label="model",
|
| 35 |
-
value="
|
| 36 |
info="Model to run the benchmark on. In the particular case of this space, only models that are hosted on huggingface.co/models can be benchmarked.",
|
| 37 |
)
|
| 38 |
task = gr.Dropdown(
|
|
@@ -73,8 +72,6 @@ with gr.Blocks() as demo:
|
|
| 73 |
openvino_config = get_openvino_config()
|
| 74 |
with gr.Accordion(label="Neural Compressor Config", open=False, visible=False):
|
| 75 |
neural_compressor_config = get_neural_compressor_config()
|
| 76 |
-
with gr.Accordion(label="Text Generation Inference Config", open=False, visible=False):
|
| 77 |
-
text_generation_inference_config = get_text_generation_inference_config()
|
| 78 |
|
| 79 |
# hide backend configs based on backend
|
| 80 |
backend.change(
|
|
|
|
| 8 |
from config_store import (
|
| 9 |
get_training_config,
|
| 10 |
get_inference_config,
|
|
|
|
| 11 |
get_neural_compressor_config,
|
| 12 |
get_onnxruntime_config,
|
| 13 |
get_openvino_config,
|
| 14 |
get_pytorch_config,
|
| 15 |
)
|
| 16 |
|
| 17 |
+
BACKENDS = ["pytorch", "onnxruntime", "openvino", "neural-compressor"]
|
| 18 |
BENCHMARKS = ["inference", "training"]
|
| 19 |
DEVICES = ["cpu", "cuda"]
|
| 20 |
|
|
|
|
| 24 |
gr.HTML("<h1 style='text-align: center'>๐ค Optimum-Benchmark UI ๐๏ธ</h1>")
|
| 25 |
# explanation text
|
| 26 |
gr.Markdown(
|
| 27 |
+
"This is a demo space of [`optimum-Benchmark`](https://github.com/huggingface/optimum-benchmark.git):"
|
| 28 |
"<br>A unified multi-backend utility for benchmarking `transformers`, `diffusers`, `peft` and `timm` models with "
|
| 29 |
"Optimum's optimizations & quantization, for inference & training, on different backends & hardwares."
|
| 30 |
)
|
| 31 |
|
| 32 |
model = gr.Textbox(
|
| 33 |
label="model",
|
| 34 |
+
value="optimum/distilbert-base-uncased-finetuned-sst-2-english",
|
| 35 |
info="Model to run the benchmark on. In the particular case of this space, only models that are hosted on huggingface.co/models can be benchmarked.",
|
| 36 |
)
|
| 37 |
task = gr.Dropdown(
|
|
|
|
| 72 |
openvino_config = get_openvino_config()
|
| 73 |
with gr.Accordion(label="Neural Compressor Config", open=False, visible=False):
|
| 74 |
neural_compressor_config = get_neural_compressor_config()
|
|
|
|
|
|
|
| 75 |
|
| 76 |
# hide backend configs based on backend
|
| 77 |
backend.change(
|
config_store.py
CHANGED
|
@@ -105,79 +105,223 @@ def get_pytorch_config():
|
|
| 105 |
# info="Uses DistributedDataParallel for multi-gpu training",
|
| 106 |
# ),
|
| 107 |
# peft_strategy
|
| 108 |
-
gr.
|
| 109 |
value="null",
|
|
|
|
| 110 |
label="pytorch.peft_strategy",
|
|
|
|
| 111 |
),
|
| 112 |
]
|
| 113 |
|
| 114 |
|
| 115 |
def get_onnxruntime_config():
|
| 116 |
-
return get_base_backend_config(backend_name="onnxruntime")
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
|
| 171 |
def get_openvino_config():
|
| 172 |
-
return get_base_backend_config(backend_name="openvino")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
|
| 175 |
def get_neural_compressor_config():
|
| 176 |
-
return get_base_backend_config(backend_name="neural-compressor")
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
|
| 183 |
def get_inference_config():
|
|
|
|
| 105 |
# info="Uses DistributedDataParallel for multi-gpu training",
|
| 106 |
# ),
|
| 107 |
# peft_strategy
|
| 108 |
+
gr.Dropdown(
|
| 109 |
value="null",
|
| 110 |
+
choices=["null", "lora", "ada_lora", "prompt_tuning", "prefix_tuning", "p_tuning", "ia3"],
|
| 111 |
label="pytorch.peft_strategy",
|
| 112 |
+
info="Use null for no PEFT",
|
| 113 |
),
|
| 114 |
]
|
| 115 |
|
| 116 |
|
| 117 |
def get_onnxruntime_config():
|
| 118 |
+
return get_base_backend_config(backend_name="onnxruntime") + [
|
| 119 |
+
# no_weights
|
| 120 |
+
gr.Checkbox(
|
| 121 |
+
value=False,
|
| 122 |
+
label="pytorch.no_weights",
|
| 123 |
+
info="Generates random weights instead of downloading pretrained ones",
|
| 124 |
+
),
|
| 125 |
+
# export
|
| 126 |
+
gr.Checkbox(
|
| 127 |
+
value=True,
|
| 128 |
+
label="onnxruntime.export",
|
| 129 |
+
info="Exports the model to ONNX",
|
| 130 |
+
),
|
| 131 |
+
# use_cache
|
| 132 |
+
gr.Checkbox(
|
| 133 |
+
value=True,
|
| 134 |
+
label="onnxruntime.use_cache",
|
| 135 |
+
info="Uses cached ONNX model if available",
|
| 136 |
+
),
|
| 137 |
+
# use_merged
|
| 138 |
+
gr.Checkbox(
|
| 139 |
+
value=False,
|
| 140 |
+
label="onnxruntime.use_merged",
|
| 141 |
+
info="Uses merged ONNX model if available",
|
| 142 |
+
),
|
| 143 |
+
# torch_dtype
|
| 144 |
+
gr.Dropdown(
|
| 145 |
+
value="null",
|
| 146 |
+
label="onnxruntime.torch_dtype",
|
| 147 |
+
choices=["null", "bfloat16", "float16", "float32", "auto"],
|
| 148 |
+
info="Use null for default and `auto` for automatic dtype selection",
|
| 149 |
+
),
|
| 150 |
+
# use_io_binding
|
| 151 |
+
gr.Checkbox(
|
| 152 |
+
value=True,
|
| 153 |
+
label="onnxruntime.use_io_binding",
|
| 154 |
+
info="Uses IO binding for inference",
|
| 155 |
+
),
|
| 156 |
+
# auto_optimization
|
| 157 |
+
gr.Dropdown(
|
| 158 |
+
value="null",
|
| 159 |
+
label="onnxruntime.auto_optimization",
|
| 160 |
+
choices=["null", "O1", "O2", "O3", "O4"],
|
| 161 |
+
info="Use null for default",
|
| 162 |
+
),
|
| 163 |
+
# auto_quantization
|
| 164 |
+
gr.Dropdown(
|
| 165 |
+
value="null",
|
| 166 |
+
label="onnxruntime.auto_quantization",
|
| 167 |
+
choices=["null", "arm64", "avx2", "avx512", "avx512_vnni", "tensorrt"],
|
| 168 |
+
info="Use null for default",
|
| 169 |
+
),
|
| 170 |
+
# optimization
|
| 171 |
+
gr.Checkbox(
|
| 172 |
+
value=False,
|
| 173 |
+
label="onnxruntime.optimization",
|
| 174 |
+
info="Enables manual optimization",
|
| 175 |
+
),
|
| 176 |
+
# optimization_config
|
| 177 |
+
gr.Dataframe(
|
| 178 |
+
type="array",
|
| 179 |
+
value=[["optimization_level"]],
|
| 180 |
+
headers=["1"],
|
| 181 |
+
row_count=(1, "static"),
|
| 182 |
+
col_count=(1, "dynamic"),
|
| 183 |
+
label="onnxruntime.optimization_config",
|
| 184 |
+
),
|
| 185 |
+
# quantization
|
| 186 |
+
gr.Checkbox(
|
| 187 |
+
value=False,
|
| 188 |
+
label="onnxruntime.quantization",
|
| 189 |
+
info="Enables manual quantization",
|
| 190 |
+
),
|
| 191 |
+
# quantization_config
|
| 192 |
+
gr.Dataframe(
|
| 193 |
+
type="array",
|
| 194 |
+
value=[["is_static"]],
|
| 195 |
+
headers=[False],
|
| 196 |
+
row_count=(1, "static"),
|
| 197 |
+
col_count=(1, "dynamic"),
|
| 198 |
+
label="onnxruntime.quantization_config",
|
| 199 |
+
info="Use null for default",
|
| 200 |
+
),
|
| 201 |
+
# calibration
|
| 202 |
+
gr.Checkbox(
|
| 203 |
+
value=False,
|
| 204 |
+
label="onnxruntime.calibration",
|
| 205 |
+
info="Enables calibration",
|
| 206 |
+
),
|
| 207 |
+
# calibration_config
|
| 208 |
+
gr.Dataframe(
|
| 209 |
+
type="array",
|
| 210 |
+
value=[["glue"]],
|
| 211 |
+
headers=["dataset_name"],
|
| 212 |
+
row_count=(1, "static"),
|
| 213 |
+
col_count=(1, "dynamic"),
|
| 214 |
+
label="onnxruntime.calibration_config",
|
| 215 |
+
info="Use null for default",
|
| 216 |
+
),
|
| 217 |
+
# peft_strategy
|
| 218 |
+
gr.Dropdown(
|
| 219 |
+
value="null",
|
| 220 |
+
label="onnxruntime.peft_strategy",
|
| 221 |
+
choices=["null", "lora", "ada_lora", "prompt_tuning", "prefix_tuning", "p_tuning", "ia3"],
|
| 222 |
+
info="Use null for full parameters fine-tuning",
|
| 223 |
+
),
|
| 224 |
+
]
|
| 225 |
|
| 226 |
|
| 227 |
def get_openvino_config():
|
| 228 |
+
return get_base_backend_config(backend_name="openvino") + [
|
| 229 |
+
# export
|
| 230 |
+
gr.Checkbox(
|
| 231 |
+
value=True,
|
| 232 |
+
label="openvino.export",
|
| 233 |
+
info="Exports the model to ONNX",
|
| 234 |
+
),
|
| 235 |
+
# use_cache
|
| 236 |
+
gr.Checkbox(
|
| 237 |
+
value=True,
|
| 238 |
+
label="openvino.use_cache",
|
| 239 |
+
info="Uses cached ONNX model if available",
|
| 240 |
+
),
|
| 241 |
+
# use_merged
|
| 242 |
+
gr.Checkbox(
|
| 243 |
+
value=False,
|
| 244 |
+
label="openvino.use_merged",
|
| 245 |
+
info="Uses merged ONNX model if available",
|
| 246 |
+
),
|
| 247 |
+
# reshape
|
| 248 |
+
gr.Checkbox(
|
| 249 |
+
value=False,
|
| 250 |
+
label="openvino.reshape",
|
| 251 |
+
info="Reshapes the model to the input shape",
|
| 252 |
+
),
|
| 253 |
+
# half
|
| 254 |
+
gr.Checkbox(
|
| 255 |
+
value=False,
|
| 256 |
+
label="openvino.half",
|
| 257 |
+
info="Converts model to half precision",
|
| 258 |
+
),
|
| 259 |
+
# quantization
|
| 260 |
+
gr.Checkbox(
|
| 261 |
+
value=False,
|
| 262 |
+
label="openvino.quantization",
|
| 263 |
+
info="Enables quantization",
|
| 264 |
+
),
|
| 265 |
+
# quantization_config
|
| 266 |
+
gr.Dataframe(
|
| 267 |
+
type="array",
|
| 268 |
+
headers=["compression", "input_info", "save_onnx_model"],
|
| 269 |
+
value=[[None, None, None]],
|
| 270 |
+
row_count=(1, "static"),
|
| 271 |
+
col_count=(3, "dynamic"),
|
| 272 |
+
label="openvino.quantization_config",
|
| 273 |
+
),
|
| 274 |
+
# calibration
|
| 275 |
+
gr.Checkbox(
|
| 276 |
+
value=False,
|
| 277 |
+
label="openvino.calibration",
|
| 278 |
+
info="Enables calibration",
|
| 279 |
+
),
|
| 280 |
+
# calibration_config
|
| 281 |
+
gr.Dataframe(
|
| 282 |
+
type="array",
|
| 283 |
+
headers=["dataset_name"],
|
| 284 |
+
value=[["glue"]],
|
| 285 |
+
row_count=(1, "static"),
|
| 286 |
+
col_count=(1, "dynamic"),
|
| 287 |
+
label="openvino.calibration_config",
|
| 288 |
+
),
|
| 289 |
+
]
|
| 290 |
|
| 291 |
|
| 292 |
def get_neural_compressor_config():
|
| 293 |
+
return get_base_backend_config(backend_name="neural-compressor") + [
|
| 294 |
+
# ptq_quantization
|
| 295 |
+
gr.Checkbox(
|
| 296 |
+
value=False,
|
| 297 |
+
label="neural-compressor.ptq_quantization",
|
| 298 |
+
info="Enables post-training quantization",
|
| 299 |
+
),
|
| 300 |
+
# ptq_quantization_config
|
| 301 |
+
gr.Dataframe(
|
| 302 |
+
type="array",
|
| 303 |
+
headers=["device"],
|
| 304 |
+
value=[["cpu"]],
|
| 305 |
+
row_count=(1, "static"),
|
| 306 |
+
col_count=(1, "dynamic"),
|
| 307 |
+
label="neural-compressor.ptq_quantization_config",
|
| 308 |
+
),
|
| 309 |
+
# calibration
|
| 310 |
+
gr.Checkbox(
|
| 311 |
+
value=False,
|
| 312 |
+
label="neural-compressor.calibration",
|
| 313 |
+
info="Enables calibration",
|
| 314 |
+
),
|
| 315 |
+
# calibration_config
|
| 316 |
+
gr.Dataframe(
|
| 317 |
+
type="array",
|
| 318 |
+
headers=["dataset_name"],
|
| 319 |
+
value=[["glue"]],
|
| 320 |
+
row_count=(1, "static"),
|
| 321 |
+
col_count=(1, "dynamic"),
|
| 322 |
+
label="neural-compressor.calibration_config",
|
| 323 |
+
),
|
| 324 |
+
]
|
| 325 |
|
| 326 |
|
| 327 |
def get_inference_config():
|