Spaces:
Running
Running
File size: 41,715 Bytes
a39c9ee c7e31fc 06e24a5 a39c9ee c7e31fc a39c9ee ea87f8a a39c9ee ded306a c7e31fc a39c9ee c7e31fc a39c9ee b82b0f6 a39c9ee c7e31fc a39c9ee c7e31fc a39c9ee ea87f8a c7e31fc a39c9ee ea87f8a a39c9ee ea87f8a a39c9ee ea87f8a a39c9ee ea87f8a a39c9ee bc7e77f a39c9ee bc7e77f a39c9ee ea87f8a a39c9ee c7e31fc ea87f8a a39c9ee c7e31fc bc7e77f a39c9ee ea87f8a bc7e77f ea87f8a a39c9ee b82b0f6 a39c9ee c7e31fc a39c9ee e9c6162 a39c9ee bc7e77f a39c9ee ea87f8a a39c9ee ea87f8a a39c9ee c7e31fc a39c9ee a03bf63 ea87f8a a39c9ee bc7e77f ea87f8a a39c9ee ea87f8a bc7e77f 06e24a5 a39c9ee fc1c963 06e24a5 a39c9ee 06e24a5 a39c9ee b82b0f6 a39c9ee c7e31fc a39c9ee e9c6162 a39c9ee 2d82228 a39c9ee c7e31fc a39c9ee bc7e77f a39c9ee bc7e77f a39c9ee a03bf63 c7f5d45 a03bf63 a39c9ee ea87f8a fc1c963 c85dae3 fc1c963 c85dae3 f04c85d fc1c963 5a3498b f04c85d a39c9ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 |
import csv
import os
import base64
from datetime import datetime
from typing import Optional, Union, List
import gradio as gr
from huggingface_hub import HfApi, Repository
from optimum_neuron_export import convert, DIFFUSION_PIPELINE_MAPPING
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
# Define transformer tasks and their categories for coloring
TRANSFORMER_TASKS = {
"auto": {"color": "#6b7280", "category": "Auto"},
"feature-extraction": {"color": "#3b82f6", "category": "Feature Extraction"},
"fill-mask": {"color": "#8b5cf6", "category": "NLP"},
"multiple-choice": {"color": "#8b5cf6", "category": "NLP"},
"question-answering": {"color": "#8b5cf6", "category": "NLP"},
"text-classification": {"color": "#8b5cf6", "category": "NLP"},
"token-classification": {"color": "#8b5cf6", "category": "NLP"},
"text-generation": {"color": "#10b981", "category": "Text Generation"},
"text2text-generation": {"color": "#10b981", "category": "Text Generation"},
"audio-classification": {"color": "#f59e0b", "category": "Audio"},
"automatic-speech-recognition": {"color": "#f59e0b", "category": "Audio"},
"audio-frame-classification": {"color": "#f59e0b", "category": "Audio"},
"audio-xvector": {"color": "#f59e0b", "category": "Audio"},
"image-classification": {"color": "#ef4444", "category": "Vision"},
"object-detection": {"color": "#ef4444", "category": "Vision"},
"semantic-segmentation": {"color": "#ef4444", "category": "Vision"},
"zero-shot-image-classification": {"color": "#ec4899", "category": "Multimodal"},
"sentence-similarity": {"color": "#06b6d4", "category": "Similarity"},
}
# Define diffusion pipeline types - updated structure
DIFFUSION_PIPELINES = {
"stable-diffusion": {"color": "#ec4899", "category": "Stable Diffusion", "tasks": ["text-to-image", "image-to-image", "inpaint"]},
"stable-diffusion-xl": {"color": "#10b981", "category": "Stable Diffusion XL", "tasks": ["text-to-image", "image-to-image", "inpaint"]},
"sdxl-turbo": {"color": "#f59e0b", "category": "SDXL Turbo", "tasks": ["text-to-image", "image-to-image", "inpaint"]},
"lcm": {"color": "#8b5cf6", "category": "LCM", "tasks": ["text-to-image"]},
"pixart-alpha": {"color": "#ef4444", "category": "PixArt", "tasks": ["text-to-image"]},
"pixart-sigma": {"color": "#ef4444", "category": "PixArt", "tasks": ["text-to-image"]},
"flux": {"color": "#06b6d4", "category": "Flux", "tasks": ["text-to-image", "inpaint"]},
"flux-kontext": {"color": "#06b6d4", "category": "Flux Kontext", "tasks": ["text-to-image", "image-to-image"]},
}
TAGS = {
"Feature Extraction": {"color": "#3b82f6", "category": "Feature Extraction"},
"NLP": {"color": "#8b5cf6", "category": "NLP"},
"Text Generation": {"color": "#10b981", "category": "Text Generation"},
"Audio": {"color": "#f59e0b", "category": "Audio"},
"Vision": {"color": "#ef4444", "category": "Vision"},
"Multimodal": {"color": "#ec4899", "category": "Multimodal"},
"Similarity": {"color": "#06b6d4", "category": "Similarity"},
"Stable Diffusion": {"color": "#ec4899", "category": "Stable Diffusion"},
"Stable Diffusion XL": {"color": "#10b981", "category": "Stable Diffusion XL"},
"ControlNet": {"color": "#f59e0b", "category": "ControlNet"},
"ControlNet XL": {"color": "#f59e0b", "category": "ControlNet XL"},
"PixArt": {"color": "#ef4444", "category": "PixArt"},
"Latent Consistency": {"color": "#8b5cf6", "category": "Latent Consistency"},
"Flux": {"color": "#06b6d4", "category": "Flux"},
}
# UPDATED: New choices for the Pull Request destination UI component
DEST_NEW_NEURON_REPO = "Create new Neuron-optimized repository"
DEST_CACHE_REPO = "Create a PR in the cache repository"
DEST_CUSTOM_REPO = "Create a PR in a custom repository"
PR_DESTINATION_CHOICES = [
DEST_CACHE_REPO,
DEST_NEW_NEURON_REPO,
DEST_CUSTOM_REPO
]
DEFAULT_CACHE_REPO = "aws-neuron/optimum-neuron-cache"
# Get all tasks and pipelines for dropdowns
ALL_TRANSFORMER_TASKS = list(TRANSFORMER_TASKS.keys())
ALL_DIFFUSION_PIPELINES = list(DIFFUSION_PIPELINES.keys())
def create_task_tag(task: str) -> str:
"""Create a colored HTML tag for a task"""
if task in TRANSFORMER_TASKS:
color = TRANSFORMER_TASKS[task]["color"]
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
elif task in DIFFUSION_PIPELINES:
color = DIFFUSION_PIPELINES[task]["color"]
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
elif task in TAGS:
color = TAGS[task]["color"]
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
else:
return f'<span style="background-color: #6b7280; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
def format_tasks_for_table(tasks_str: str) -> str:
"""Convert comma-separated tasks into colored tags"""
tasks = [task.strip() for task in tasks_str.split(',')]
return ' '.join([create_task_tag(task) for task in tasks])
def update_pipeline_and_task_dropdowns(model_type: str):
"""Update the pipeline and task dropdowns based on selected model type"""
if model_type == "transformers":
return (
gr.Dropdown(visible=False), # pipeline dropdown hidden
gr.Dropdown(
choices=ALL_TRANSFORMER_TASKS,
value="auto",
label="Task (auto can infer task from model)",
visible=True
)
)
else: # diffusers
# Show pipeline dropdown, hide task dropdown initially
return (
gr.Dropdown(
choices=ALL_DIFFUSION_PIPELINES,
value="stable-diffusion",
label="Pipeline Type",
visible=True
),
gr.Dropdown(
choices=DIFFUSION_PIPELINES["stable-diffusion"]["tasks"],
value=DIFFUSION_PIPELINES["stable-diffusion"]["tasks"][0],
label="Task",
visible=True
)
)
def update_task_dropdown_for_pipeline(pipeline_name: str):
"""Update task dropdown based on selected pipeline"""
if pipeline_name in DIFFUSION_PIPELINES:
tasks = DIFFUSION_PIPELINES[pipeline_name]["tasks"]
return gr.Dropdown(
choices=tasks,
value=tasks[0] if tasks else None,
label="Task",
visible=True
)
return gr.Dropdown(visible=False)
def toggle_custom_repo_box(pr_destinations: List[str]):
"""Show or hide the custom repo ID textbox based on checkbox selection."""
if DEST_CUSTOM_REPO in pr_destinations:
return gr.Textbox(visible=True)
else:
return gr.Textbox(visible=False, value="")
def neuron_export(model_id: str, model_type: str, pipeline_name: str, task_or_pipeline: str,
pr_destinations: List[str], custom_repo_id: str, custom_cache_repo: str, oauth_token: gr.OAuthToken):
log_buffer = ""
def log(msg, in_progress: bool = False):
nonlocal log_buffer
# Handle cases where the message from the backend is not a string
if not isinstance(msg, str):
msg = str(msg)
log_buffer += msg + "\n"
return log_buffer, gr.update(visible=in_progress)
if oauth_token.token is None:
yield log("You must be logged in to use this space")
return
if not model_id:
yield log("🚫 Invalid input. Please specify a model name from the hub.")
return
try:
api = HfApi(token=oauth_token.token)
# Set custom cache repo as environment variable
if custom_cache_repo:
os.environ['CUSTOM_CACHE_REPO'] = custom_cache_repo.strip()
yield log("🔑 Logging in ...", in_progress=True)
try:
api.model_info(model_id, token=oauth_token.token)
except Exception as e:
yield log(f"❌ Could not access model `{model_id}`: {e}")
return
yield log(f"✅ Model `{model_id}` is accessible. Starting Neuron export...", in_progress=True)
# UPDATED: Build pr_options with new structure
pr_options = {
"create_cache_pr": DEST_CACHE_REPO in pr_destinations,
"create_neuron_repo": DEST_NEW_NEURON_REPO in pr_destinations,
"create_custom_pr": DEST_CUSTOM_REPO in pr_destinations,
"custom_repo_id": custom_repo_id.strip() if custom_repo_id else ""
}
# The convert function is a generator, so we iterate through its messages
for status_code, message in convert(
api, model_id, task_or_pipeline, model_type,
token=oauth_token.token, pr_options=pr_options,
pipeline_name=pipeline_name if model_type == "diffusers (soon)" else None
):
if isinstance(message, str):
yield log(message, in_progress=True)
else: # It's the final result dictionary
final_message = "🎉 Process finished.\n"
if message.get("neuron_repo"):
final_message += f"🏗️ New Neuron Repository: {message['neuron_repo']}\n"
if message.get("readme_pr"):
final_message += f"📝 README PR (Original Model): {message['readme_pr']}\n"
if message.get("cache_pr"):
final_message += f"🔗 Cache PR: {message['cache_pr']}\n"
if message.get("custom_pr"):
final_message += f"🔗 Custom PR: {message['custom_pr']}\n"
yield log(final_message)
except Exception as e:
yield log(f"❗ An unexpected error occurred in the Gradio interface: {e}")
TITLE = """
<div style="text-align: center; max-width: 1400px; margin: 0 auto;">
<h1 style="font-weight: 900; margin-bottom: 10px; margin-top: 10px; font-size: 2.2rem;">
🤗 Optimum Neuron Model Exporter 🏎️
</h1>
</div>
"""
# UPDATED: Description to reflect new workflow
DESCRIPTION = """
This Space allows you to automatically export 🤗 transformers to AWS Neuron-optimized format for Inferentia/Trainium acceleration.
"""
CUSTOM_CSS = """
/* Primary button styling with warm colors */
button.gradio-button.lg.primary {
/* Changed the blue/green gradient to an orange/yellow one */
background: linear-gradient(135deg, #F97316, #FBBF24) !important;
color: white !important;
padding: 16px 32px !important;
font-size: 1.1rem !important;
font-weight: 700 !important;
border: none !important;
border-radius: 12px !important;
/* Updated the shadow to match the new orange color */
box-shadow: 0 0 15px rgba(249, 115, 22, 0.5) !important;
transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important;
position: relative;
overflow: hidden;
}
/* Login button styling with glow effect using dark blue and violet colors */
#login-button {
background: linear-gradient(135deg, #1a237e, #6a1b9a) !important; /* Dark Blue to Violet */
color: white !important;
font-weight: 700 !important;
border: none !important;
border-radius: 12px !important;
box-shadow: 0 0 15px rgba(106, 27, 154, 0.6) !important; /* Cool violet glow */
transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important;
position: relative;
overflow: hidden;
animation: glow 1.5s ease-in-out infinite alternate;
max-width: 350px !important;
margin: 0 auto !important;
}
#login-button::before {
content: "🔑 ";
display: inline-block !important;
vertical-align: middle !important;
margin-right: 5px !important;
line-height: normal !important;
}
#login-button:hover {
transform: translateY(-3px) scale(1.03) !important;
box-shadow: 0 10px 25px rgba(26, 35, 126, 0.7) !important; /* Deeper blue glow */
}
#login-button::after {
content: "";
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.25), transparent);
transition: 0.5s;
}
#login-button:hover::after {
left: 100%;
}
.loader {
width: 20px;
height: 20px;
border: 5px solid #d7d7d7;
border-bottom-color: transparent;
border-radius: 50%;
display: inline-block;
box-sizing: border-box;
animation: rotation 1s linear infinite;
}
@keyframes rotation {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
"""
LOADING_MESSAGE = """
<div id="in_progress"><span class="loader"> </span> Model export in progress...</div>
"""
# Download the title image at startup and encode as base64 to avoid CORS errors
def get_title_image_html():
"""Download image and return HTML with base64 encoded image"""
image_data = None
# Download image
try:
# Use huggingface_hub to download the file (handles auth automatically)
from huggingface_hub import hf_hub_download
downloaded_path = hf_hub_download(
repo_id="optimum/neuron-exporter",
filename="huggingfaceXneuron.png",
repo_type="space"
)
# Read directly from downloaded path
with open(downloaded_path, 'rb') as f:
image_data = f.read()
except Exception as e:
print(f"Warning: Could not download title image: {e}")
return "" # Return empty if download fails
# Encode as base64
if image_data:
encoded = base64.b64encode(image_data).decode('utf-8')
return f"""
<div style="display: block; margin-left: auto; margin-right: auto; width: 50%;">
<img src="data:image/png;base64,{encoded}"/>
</div>
"""
return ""
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft()) as demo:
login_message = gr.Markdown("**You must be logged in to use this space**", visible=True)
login_button = gr.LoginButton(elem_id="login-button", elem_classes="center-button", min_width=250)
title_image = get_title_image_html()
gr.HTML(title_image)
gr.HTML(TITLE)
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.Tab("Export Model"):
with gr.Group():
with gr.Row():
pr_destinations_checkbox = gr.CheckboxGroup(
choices=PR_DESTINATION_CHOICES,
label="Export Destination",
value=[DEST_CACHE_REPO],
info="Select one or more destinations for the compiled model."
)
custom_repo_id_textbox = gr.Textbox(
label="Custom Repository ID",
placeholder="e.g., your-username/your-repo-name",
visible=False,
interactive=True
)
custom_cache_repo_textbox = gr.Textbox(
label="Custom Cache Repository",
placeholder="e.g., your-org/your-cache-repo",
value=DEFAULT_CACHE_REPO,
info=f"Repository to store and fetch from compilation cache artifacts (default: {DEFAULT_CACHE_REPO}) ",
interactive=True
)
with gr.Row():
model_type = gr.Radio(
choices=["transformers", "diffusers (soon)"],
value="transformers",
label="Model Type",
info="Choose the type of model you want to export"
)
with gr.Row():
input_model = HuggingfaceHubSearch(
label="Hub model ID",
placeholder="Search for a model on the Hub...",
search_type="model",
)
pipeline_dropdown = gr.Dropdown(
choices=ALL_DIFFUSION_PIPELINES,
value="stable-diffusion",
label="Pipeline Type",
visible=False
)
task_dropdown = gr.Dropdown(
choices=ALL_TRANSFORMER_TASKS,
value="auto",
label="Task (auto can infer from model)",
)
btn = gr.Button("Export to Neuron", size="lg", variant="primary")
loading_message = gr.HTML(LOADING_MESSAGE, visible=False, elem_id="loaging_message")
log_box = gr.Textbox(label="Logs", lines=20, interactive=False, show_copy_button=True)
# Event Handlers
model_type.change(
fn=update_pipeline_and_task_dropdowns,
inputs=[model_type],
outputs=[pipeline_dropdown, task_dropdown]
)
pipeline_dropdown.change(
fn=update_task_dropdown_for_pipeline,
inputs=[pipeline_dropdown],
outputs=[task_dropdown]
)
pr_destinations_checkbox.change(
fn=toggle_custom_repo_box,
inputs=pr_destinations_checkbox,
outputs=custom_repo_id_textbox
)
btn.click(
fn=neuron_export,
inputs=[
input_model,
model_type,
pipeline_dropdown,
task_dropdown,
pr_destinations_checkbox,
custom_repo_id_textbox,
custom_cache_repo_textbox
],
outputs=[log_box, loading_message],
)
with gr.Tab("Get Started"):
gr.Markdown(
"""
**optimum-neuron version:** 0.4.1
This Space allows you to automatically export 🤗 transformers to AWS Neuron-optimized format for Inferentia/Trainium acceleration.
Simply provide a model ID from the Hugging Face Hub, and choose your desired output.
### ✨ Key Features
* **🚀 Create a New Optimized Repo**: Automatically converts your model and uploads it to a new repository under your username (e.g., `your-username/model-name-neuron`).
* **🔗 Link Back to Original**: Creates a Pull Request on the original model's repository to add a link to your optimized version, making it easier for the community to discover.
* **🛠️ PR to a Custom Repo**: For custom workflows, you can create a Pull Request to add the optimized files directly into an existing repository you own.
* **📦 Contribute to Cache**: Contribute the generated compilation artifacts to a centralized cache repository (or your own private cache), helping avoid recompilation of already exported models.
### ⚙️ How to Use
1. **Model ID**: Enter the ID of the model you want to export (e.g., `bert-base-uncased` or `stabilityai/stable-diffusion-xl-base-1.0`) and choose the corresponding task.
2. **Export Options**: Select at least one option for where to save the exported model. You can provide your own cache repo ID or use the default (`aws-neuron/optimum-neuron-cache`).
3. **Convert & Upload**: Click the button and follow the logs to track progress!
"""
)
with gr.Tab("Supported Architectures"):
gr.HTML(f"""
<div style="margin-bottom: 20px;">
<h3>🎨 Task Categories Legend</h3>
<div class="task-tags">
{create_task_tag("Feature Extraction")}
{create_task_tag("NLP")}
{create_task_tag("Text Generation")}
{create_task_tag("Audio")}
{create_task_tag("Vision")}
{create_task_tag("Multimodal")}
{create_task_tag("Similarity")}
</div>
</div>
""")
gr.HTML(f"""
<h2>🤗 Transformers</h2>
<table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
<colgroup>
<col style="width: 30%;">
<col style="width: 70%;">
</colgroup>
<thead>
<tr style="background-color: var(--background-fill-secondary);">
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Architecture</th>
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Supported Tasks</th>
</tr>
</thead>
<tbody>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ALBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">AST</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, audio-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">BERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">BLOOM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Beit</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CamemBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CLIP</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ConvBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ConvNext</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ConvNextV2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CvT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DeBERTa (INF2 only)</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DeBERTa-v2 (INF2 only)</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Deit</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DistilBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DonutSwin</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Dpt</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ELECTRA</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ESM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">FlauBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">GPT2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Hubert</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Levit</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Llama, Llama 2, Llama 3</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Mistral</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Mixtral</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MobileBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MobileNetV2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification, semantic-segmentation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MobileViT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification, semantic-segmentation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ModernBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MPNet</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">OPT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Phi</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">RoBERTa</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">RoFormer</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Swin</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">T5</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text2text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">UniSpeech</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">UniSpeech-SAT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification, audio-frame-classification, audio-xvector")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ViT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Wav2Vec2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification, audio-frame-classification, audio-xvector")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">WavLM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification, audio-frame-classification, audio-xvector")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Whisper</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("automatic-speech-recognition")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">XLM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">XLM-RoBERTa</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Yolos</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, object-detection")}</td></tr>
</tbody>
</table>
<h2>🧨 Diffusers</h2>
<table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
<colgroup>
<col style="width: 30%;">
<col style="width: 70%;">
</colgroup>
<thead>
<tr style="background-color: var(--background-fill-secondary);">
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Architecture</th>
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Supported Tasks</th>
</tr>
</thead>
<tbody>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Stable Diffusion</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image, image-to-image, inpaint")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Stable Diffusion XL Base</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image, image-to-image, inpaint")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Stable Diffusion XL Refiner</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("image-to-image, inpaint")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">SDXL Turbo</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image, image-to-image, inpaint")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">LCM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">PixArt-α</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">PixArt-Σ</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Flux</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
</tbody>
</table>
<h2>🤖 Sentence Transformers</h2>
<table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
<colgroup>
<col style="width: 30%;">
<col style="width: 70%;">
</colgroup>
<thead>
<tr style="background-color: var(--background-fill-secondary);">
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Architecture</th>
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Supported Tasks</th>
</tr>
</thead>
<tbody>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Transformer</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, sentence-similarity")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CLIP</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, zero-shot-image-classification")}</td></tr>
</tbody>
</table>
<div style="margin-top: 20px;">
<p>💡 <strong>Note</strong>: Some architectures may have specific requirements or limitations. DeBERTa models are only supported on INF2 instances.</p>
<p>For more details, check the <a href="https://huggingface.co/docs/optimum-neuron" target="_blank">Optimum Neuron documentation</a>.</p>
</div>
""")
# Add spacing between tabs and content
gr.Markdown("<br><br><br><br>")
def update_login_visibility(oauth_token: gr.OAuthToken):
if oauth_token.token is None:
return gr.Markdown(visible=True)
else:
return gr.Markdown(visible=False)
demo.load(
fn=update_login_visibility,
inputs=None,
outputs=[login_message]
)
if __name__ == "__main__":
demo.launch(debug=True) |