Spaces:
Running
Running
File size: 31,625 Bytes
c35efb6 3589792 c35efb6 3589792 e45c413 c35efb6 3589792 c35efb6 3589792 226aa6a e45c413 3589792 c35efb6 3589792 c35efb6 cc6b586 c35efb6 cc6b586 c35efb6 cc6b586 c35efb6 3589792 c35efb6 3b3fb78 3589792 3b3fb78 c35efb6 3589792 226aa6a 3589792 cc6b586 3589792 3b3fb78 3589792 cc6b586 3589792 3b3fb78 0a7e495 3b3fb78 cc6b586 3b3fb78 3589792 3b3fb78 c35efb6 3589792 c35efb6 3589792 c35efb6 3589792 c35efb6 3589792 c35efb6 3589792 c35efb6 3589792 c35efb6 3589792 c35efb6 3589792 c35efb6 3589792 c35efb6 3589792 c35efb6 3589792 c35efb6 3589792 c35efb6 3589792 c35efb6 3589792 c35efb6 3589792 c35efb6 3b3fb78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 |
import os
import shutil
from tempfile import TemporaryDirectory, NamedTemporaryFile
from typing import List, Union, Optional, Tuple, Dict, Any, Generator
from pathlib import Path
import torch
import gradio as gr
from huggingface_hub import (
CommitOperationAdd,
HfApi,
ModelCard,
Discussion,
CommitInfo,
create_repo,
RepoUrl,
)
from huggingface_hub.file_download import repo_folder_name
from optimum.exporters.tasks import TasksManager
from optimum.exporters.neuron.model_configs import *
from optimum.exporters.neuron import build_stable_diffusion_components_mandatory_shapes
from optimum.exporters.neuron.model_configs import *
from optimum.exporters.neuron import get_submodels_and_neuron_configs, export_models
from optimum.neuron import (
NeuronModelForFeatureExtraction,
NeuronModelForSentenceTransformers,
NeuronModelForMaskedLM,
NeuronModelForQuestionAnswering,
NeuronModelForSequenceClassification,
NeuronModelForTokenClassification,
NeuronModelForMultipleChoice,
NeuronModelForImageClassification,
NeuronModelForSemanticSegmentation,
NeuronModelForObjectDetection,
NeuronModelForAudioClassification,
NeuronModelForAudioFrameClassification,
NeuronModelForCTC,
NeuronModelForXVector,
NeuronModelForCausalLM,
NeuronModelForSeq2SeqLM,
)
# Import diffusers pipelines
from diffusers import (
StableDiffusionPipeline,
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionXLPipeline,
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
LatentConsistencyModelPipeline,
PixArtAlphaPipeline,
PixArtSigmaPipeline,
FluxPipeline,
FluxInpaintPipeline,
FluxImg2ImgPipeline,
FluxKontextPipeline,
)
from optimum.neuron.cache import synchronize_hub_cache
from synchronizer import synchronize_hub_cache_with_pr
SPACES_URL = "https://huggingface.co/spaces/optimum/neuron-export"
CUSTOM_CACHE_REPO = os.getenv("CUSTOM_CACHE_REPO")
HF_TOKEN = os.environ.get("HF_TOKEN")
# Task to NeuronModel mapping for transformers
TASK_TO_MODEL_CLASS = {
"feature-extraction": NeuronModelForFeatureExtraction,
"sentence-transformers": NeuronModelForSentenceTransformers,
"fill-mask": NeuronModelForMaskedLM,
"question-answering": NeuronModelForQuestionAnswering,
"text-classification": NeuronModelForSequenceClassification,
"token-classification": NeuronModelForTokenClassification,
"multiple-choice": NeuronModelForMultipleChoice,
"image-classification": NeuronModelForImageClassification,
"semantic-segmentation": NeuronModelForSemanticSegmentation,
"object-detection": NeuronModelForObjectDetection,
"audio-classification": NeuronModelForAudioClassification,
"audio-frame-classification": NeuronModelForAudioFrameClassification,
"automatic-speech-recognition": NeuronModelForCTC,
"audio-xvector": NeuronModelForXVector,
"text-generation": NeuronModelForCausalLM,
"text2text-generation": NeuronModelForSeq2SeqLM,
}
# Diffusion pipeline mapping with their corresponding diffusers classes and supported tasks
DIFFUSION_PIPELINE_MAPPING = {
"stable-diffusion": {
"class": StableDiffusionPipeline,
"tasks": ["text-to-image"],
"default_task": "text-to-image"
},
"stable-diffusion-img2img": {
"class": StableDiffusionImg2ImgPipeline,
"tasks": ["image-to-image"],
"default_task": "image-to-image"
},
"stable-diffusion-inpaint": {
"class": StableDiffusionInpaintPipeline,
"tasks": ["inpaint"],
"default_task": "inpaint"
},
"stable-diffusion-xl": {
"class": StableDiffusionXLPipeline,
"tasks": ["text-to-image"],
"default_task": "text-to-image"
},
"stable-diffusion-xl-img2img": {
"class": StableDiffusionXLImg2ImgPipeline,
"tasks": ["image-to-image"],
"default_task": "image-to-image"
},
"stable-diffusion-xl-inpaint": {
"class": StableDiffusionXLInpaintPipeline,
"tasks": ["inpaint"],
"default_task": "inpaint"
},
"lcm": {
"class": LatentConsistencyModelPipeline,
"tasks": ["text-to-image"],
"default_task": "text-to-image"
},
"pixart-alpha": {
"class": PixArtAlphaPipeline,
"tasks": ["text-to-image"],
"default_task": "text-to-image"
},
"pixart-sigma": {
"class": PixArtSigmaPipeline,
"tasks": ["text-to-image"],
"default_task": "text-to-image"
},
"flux": {
"class": FluxPipeline,
"tasks": ["text-to-image"],
"default_task": "text-to-image"
},
"flux-inpaint": {
"class": FluxInpaintPipeline,
"tasks": ["inpaint"],
"default_task": "inpaint"
},
"flux-kontext": {
"class": FluxKontextPipeline,
"tasks": ["text-to-image", "image-to-image"],
"default_task": "text-to-image"
},
}
def get_default_inputs(task_or_pipeline: str, pipeline_name: str = None) -> Dict[str, int]:
"""Get default input shapes based on task type or diffusion pipeline type."""
if task_or_pipeline in ["feature-extraction", "sentence-transformers", "fill-mask", "question-answering", "text-classification", "token-classification","text-generation"]:
return {"batch_size": 1, "sequence_length": 128}
elif task_or_pipeline == "multiple-choice":
return {"batch_size": 1, "num_choices": 4, "sequence_length": 128}
elif task_or_pipeline == "text2text-generation":
return {"batch_size": 1, "sequence_length": 128, "num_beams":4}
elif task_or_pipeline in ["image-classification", "semantic-segmentation", "object-detection"]:
return {"batch_size": 1, "num_channels": 3, "height": 224, "width": 224}
elif task_or_pipeline in ["audio-classification", "audio-frame-classification", "audio-xvector"]:
return {"batch_size": 1, "audio_sequence_length": 16000}
elif pipeline_name and pipeline_name in DIFFUSION_PIPELINE_MAPPING:
# For diffusion models, use appropriate sizes based on pipeline
if "xl" in pipeline_name.lower():
return {"batch_size": 1, "height": 1024, "width": 1024, "num_images_per_prompt": 1}
else:
return {"batch_size": 1, "height": 512, "width": 512, "num_images_per_prompt": 1}
else:
# Default to text-based shapes
return {"batch_size": 1, "sequence_length": 128}
def find_neuron_cache_artifacts(cache_base_dir: str = "/var/tmp/neuron-compile-cache") -> Optional[str]:
"""
Find the most recently created Neuron cache artifacts directory.
Returns the path to the MODULE directory containing the compiled artifacts.
"""
if not os.path.exists(cache_base_dir):
return None
# Find all MODULE directories
module_dirs = []
for root, dirs, files in os.walk(cache_base_dir):
for d in dirs:
if d.startswith("MODULE_"):
full_path = os.path.join(root, d)
# Check if it contains the expected files (for transformers)
if os.path.exists(os.path.join(full_path, "model.neuron")):
module_dirs.append(full_path)
if not module_dirs:
return None
# Return the most recently modified directory
return max(module_dirs, key=os.path.getmtime)
def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]:
try:
discussions = api.get_repo_discussions(repo_id=model_id)
except Exception:
return None
for discussion in discussions:
if (
discussion.status == "open"
and discussion.is_pull_request
and discussion.title == pr_title
):
return discussion
return None
def export_diffusion_model(model_id: str, pipeline_name: str, task: str, folder: str, token: str) -> Generator:
"""Export diffusion model using optimum.exporters.neuron"""
yield f"📦 Exporting diffusion model `{model_id}` with pipeline `{pipeline_name}` for task `{task}`..."
if pipeline_name not in DIFFUSION_PIPELINE_MAPPING:
supported = list(DIFFUSION_PIPELINE_MAPPING.keys())
raise Exception(f"❌ Unsupported pipeline: {pipeline_name}. Supported: {supported}")
pipeline_config = DIFFUSION_PIPELINE_MAPPING[pipeline_name]
pipeline_class = pipeline_config["class"]
# Get default inputs
inputs = get_default_inputs(task, pipeline_name)
yield f"🔧 Using default inputs: {inputs}"
try:
# Load the pipeline
yield "📥 Loading diffusion pipeline..."
model = pipeline_class.from_pretrained(model_id, token=token)
# Build input shapes for compilation
input_shapes = build_stable_diffusion_components_mandatory_shapes(**inputs)
# Compiler arguments
compiler_kwargs = {
"auto_cast": "matmul",
"auto_cast_type": "bf16",
}
yield "🔨 Starting compilation process..."
# Get submodels and neuron configs
models_and_neuron_configs, output_model_names = get_submodels_and_neuron_configs(
model=model,
input_shapes=input_shapes,
task=task,
library_name="diffusers",
tensor_parallel_size=4,
output=Path(folder),
model_name_or_path=model_id,
)
# Export models
_, neuron_outputs = export_models(
models_and_neuron_configs=models_and_neuron_configs,
task=task,
output_dir=Path(folder),
output_file_names=output_model_names,
compiler_kwargs=compiler_kwargs,
)
yield f"✅ Diffusion model export completed. Files saved to {folder}"
except Exception as e:
yield f"❌ Export failed with error: {e}"
raise
def export_transformer_model(model_id: str, task: str, folder: str, token: str) -> Generator:
"""Export transformer model using optimum.neuron"""
yield f"📦 Exporting transformer model `{model_id}` for task `{task}`..."
model_class = TASK_TO_MODEL_CLASS.get(task)
if model_class is None:
supported = list(TASK_TO_MODEL_CLASS.keys())
raise Exception(f"❌ Unsupported task: {task}. Supported: {supported}")
inputs = get_default_inputs(task)
compiler_configs = {"auto_cast": "matmul", "auto_cast_type": "bf16", "instance_type": "inf2"}
yield f"🔧 Using default inputs: {inputs}"
# Clear any old cache artifacts before export
cache_base_dir = "/var/tmp/neuron-compile-cache"
try:
# Trigger the export/compilation
model = model_class.from_pretrained(
model_id,
export=True,
tensor_parallel_size=4,
token=token,
**compiler_configs,
**inputs,
)
yield "✅ Export/compilation completed successfully."
# Find the newly created cache artifacts
yield "🔍 Locating compiled artifacts in Neuron cache..."
cache_artifact_dir = find_neuron_cache_artifacts(cache_base_dir)
if not cache_artifact_dir:
raise Exception("❌ Could not find compiled artifacts in Neuron cache")
yield f"📂 Found artifacts at: {cache_artifact_dir}"
# Copy artifacts from cache to our target folder
yield f"📋 Copying artifacts to export folder..."
if os.path.exists(folder):
shutil.rmtree(folder)
shutil.copytree(cache_artifact_dir, folder)
yield f"✅ Artifacts successfully copied to {folder}"
except Exception as e:
yield f"❌ Export failed with error: {e}"
raise
def export_and_git_add(model_id: str, task_or_pipeline: str, model_type: str, folder: str, token: str, pipeline_name: str = None) -> Any:
operations = []
try:
if model_type == "diffusers":
# For diffusion models, use the new export function
export_gen = export_diffusion_model(model_id, pipeline_name, task_or_pipeline, folder, token)
for message in export_gen:
yield message
else:
# For transformer models, use the existing function
export_gen = export_transformer_model(model_id, task_or_pipeline, folder, token)
for message in export_gen:
yield message
# Create operations from exported files
for root, _, files in os.walk(folder):
for filename in files:
file_path = os.path.join(root, filename)
repo_path = os.path.relpath(file_path, folder)
operations.append(CommitOperationAdd(path_in_repo=repo_path, path_or_fileobj=file_path))
# Update model card
try:
card = ModelCard.load(model_id, token=token)
if not hasattr(card.data, "tags") or card.data.tags is None:
card.data.tags = []
if "neuron" not in card.data.tags:
card.data.tags.append("neuron")
readme_path = os.path.join(folder, "README.md")
card.save(readme_path)
# Check if README.md is already in operations, if so update, else add
readme_op = next((op for op in operations if op.path_in_repo == "README.md"), None)
if readme_op:
readme_op.path_or_fileobj = readme_path
else:
operations.append(CommitOperationAdd(path_in_repo="README.md", path_or_fileobj=readme_path))
except Exception as e:
yield f"⚠️ Warning: Could not update model card: {e}"
except Exception as e:
yield f"❌ Export failed with error: {e}"
raise
yield ("__RETURN__", operations)
def generate_neuron_repo_name(api, original_model_id: str, task_or_pipeline: str, token:str) -> str:
"""Generate a name for the Neuron-optimized repository."""
requesting_user = api.whoami(token=token)["name"]
base_name = original_model_id.replace('/', '-')
return f"{requesting_user}/{base_name}-neuron"
def create_neuron_repo_and_upload(
operations: List[CommitOperationAdd],
original_model_id: str,
model_type: str,
task_or_pipeline: str,
requesting_user: str,
token: str,
pipeline_name: str = None,
) -> Generator[Union[str, RepoUrl], None, None]:
"""
Creates a new repository with Neuron files and uploads them.
"""
api = HfApi(token=token)
if task_or_pipeline == "auto" and model_type == "transformers":
try:
task_or_pipeline = TasksManager.infer_task_from_model(original_model_id, token=token)
except Exception as e:
raise Exception(f"❌ Could not infer task for model {original_model_id}: {e}")
# Generate repository name
neuron_repo_name = generate_neuron_repo_name(api, original_model_id, task_or_pipeline, token)
try:
# Create the repository
repo_url = create_repo(
repo_id=neuron_repo_name,
token=token,
repo_type="model",
private=False,
exist_ok=True,
)
# Get the appropriate class name for the Python example
if model_type == "transformers":
model_class = TASK_TO_MODEL_CLASS.get(task_or_pipeline)
model_class_name = model_class.__name__ if model_class else "NeuronModel"
usage_example = f"""```python
from optimum.neuron import {model_class_name}
model = {model_class_name}.from_pretrained("{neuron_repo_name}")
```"""
else:
# For diffusion models
pipeline_config = DIFFUSION_PIPELINE_MAPPING.get(pipeline_name, {})
pipeline_class = pipeline_config.get("class")
if pipeline_class:
class_name = pipeline_class.__name__.replace("Pipeline", "")
model_class_name = f"Neuron{class_name}Pipeline"
else:
model_class_name = "NeuronStableDiffusionPipeline"
usage_example = f"""```python
from optimum.neuron import {model_class_name}
pipeline = {model_class_name}.from_pretrained("{neuron_repo_name}")
```"""
# Create enhanced model card for the Neuron repo
neuron_readme_content = f"""---
tags:
- neuron
- optimized
- aws-neuron
- {task_or_pipeline}
base_model: {original_model_id}
---
# Neuron-Optimized {original_model_id}
This repository contains AWS Neuron-optimized files for [{original_model_id}](https://huggingface.co/{original_model_id}).
## Model Details
- **Base Model**: [{original_model_id}](https://huggingface.co/{original_model_id})
- **Task**: {task_or_pipeline}
- **Optimization**: AWS Neuron compilation
- **Generated by**: [{requesting_user}](https://huggingface.co/{requesting_user})
- **Generated using**: [Optimum Neuron Compiler Space]({SPACES_URL})
## Usage
This model has been optimized for AWS Neuron devices (Inferentia/Trainium). To use it:
{usage_example}
## Performance
These files are pre-compiled for AWS Neuron devices and should provide improved inference performance compared to the original model when deployed on Inferentia or Trainium instances.
## Original Model
For the original model, training details, and more information, please visit: [{original_model_id}](https://huggingface.co/{original_model_id})
"""
# Update the README in operations
readme_op = next((op for op in operations if op.path_in_repo == "README.md"), None)
if readme_op:
# Create a temporary file with the new content
with NamedTemporaryFile(mode='w', suffix='.md', delete=False) as f:
f.write(neuron_readme_content)
readme_op.path_or_fileobj = f.name
else:
# Add new README operation
with NamedTemporaryFile(mode='w', suffix='.md', delete=False) as f:
f.write(neuron_readme_content)
operations.append(CommitOperationAdd(path_in_repo="README.md", path_or_fileobj=f.name))
# Upload files to the new repository
commit_message = f"Add Neuron-optimized files for {original_model_id}"
commit_description = f"""
🤖 Neuron Export Bot: Adding AWS Neuron-optimized model files.
Original model: [{original_model_id}](https://huggingface.co/{original_model_id})
Task: {task_or_pipeline}
Generated by: [{requesting_user}](https://huggingface.co/{requesting_user})
Generated using: [Optimum Neuron Compiler Space]({SPACES_URL})
These files have been pre-compiled for AWS Neuron devices (Inferentia/Trainium) and should provide improved inference performance.
"""
commit_info = api.create_commit(
repo_id=neuron_repo_name,
operations=operations,
commit_message=commit_message,
commit_description=commit_description,
token=token,
)
yield f"✅ Repository created: {repo_url}"
except Exception as e:
yield f"❌ Failed to create/upload to Neuron repository: {e}"
raise
def create_readme_pr_for_original_model(
original_model_id: str,
neuron_repo_name: str,
task_or_pipeline: str,
requesting_user: str,
token: str,
) -> Generator[Union[str, CommitInfo], None, None]:
"""
Creates a PR on the original model repository to add a link to the Neuron-optimized version.
"""
api = HfApi(token=token)
yield f"📝 Creating PR to add Neuron repo link in {original_model_id}..."
try:
# Check if there's already an open PR
pr_title = "Add link to Neuron-optimized version"
existing_pr = previous_pr(api, original_model_id, pr_title)
if existing_pr:
yield f"⚠️ PR already exists: https://huggingface.co/{original_model_id}/discussions/{existing_pr.num}"
return
# Get the current README
try:
current_readme_path = api.hf_hub_download(
repo_id=original_model_id,
filename="README.md",
token=token,
)
with open(current_readme_path, 'r', encoding='utf-8') as f:
readme_content = f.read()
except Exception:
# If README doesn't exist, create a basic one
readme_content = f"# {original_model_id}\n\n"
# Add Neuron optimization section, separated by a horizontal rule
neuron_section = f"""
---
## 🚀 AWS Neuron Optimized Version Available
A Neuron-optimized version of this model is available for improved performance on AWS Inferentia/Trainium instances:
**[{neuron_repo_name}](https://huggingface.co/{neuron_repo_name})**
The Neuron-optimized version provides:
- Pre-compiled artifacts for faster loading
- Optimized performance on AWS Neuron devices
- Same model capabilities with improved inference speed
"""
# Append the Neuron section to the end of the README
updated_readme = readme_content.rstrip() + "\n" + neuron_section
# Create temporary file with updated README
with NamedTemporaryFile(mode='w', suffix='.md', delete=False, encoding="utf-8") as f:
f.write(updated_readme)
temp_readme_path = f.name
# Create the PR
operations = [CommitOperationAdd(path_in_repo="README.md", path_or_fileobj=temp_readme_path)]
commit_description = f"""
🤖 Neuron Export Bot: Adding link to Neuron-optimized version.
A Neuron-optimized version of this model has been created at [{neuron_repo_name}](https://huggingface.co/{neuron_repo_name}).
The optimized version provides improved performance on AWS Inferentia/Trainium instances with pre-compiled artifacts.
Generated by: [{requesting_user}](https://huggingface.co/{requesting_user})
Generated using: [Optimum Neuron Compiler Space]({SPACES_URL})
"""
pr = api.create_commit(
repo_id=original_model_id,
operations=operations,
commit_message=pr_title,
commit_description=commit_description,
create_pr=True,
token=token,
)
yield f"✅ README PR created: https://huggingface.co/{original_model_id}/discussions/{pr.pr_num}"
# Clean up temporary file
os.unlink(temp_readme_path)
except Exception as e:
yield f"❌ Failed to create README PR: {e}"
raise
def upload_to_custom_repo(
operations: List[CommitOperationAdd],
custom_repo_id: str,
original_model_id: str,
requesting_user: str,
token: str,
) -> Generator[Union[str, CommitInfo], None, None]:
"""
Uploads neuron files to a custom repository and creates a PR.
"""
api = HfApi(token=token)
try:
# Ensure the custom repo exists
api.repo_info(repo_id=custom_repo_id, repo_type="model")
except Exception as e:
yield f"❌ Could not access custom repository `{custom_repo_id}`. Please ensure it exists and you have write access. Error: {e}"
raise
pr_title = f"Add Neuron-optimized files for {original_model_id}"
commit_description = f"""
🤖 Neuron Export Bot: On behalf of [{requesting_user}](https://huggingface.co/{requesting_user}), adding AWS Neuron-optimized model files for `{original_model_id}`.
These files were generated using the [Optimum Neuron Compiler Space](https://huggingface.co/spaces/optimum/neuron-export).
"""
try:
custom_pr = api.create_commit(
repo_id=custom_repo_id,
operations=operations,
commit_message=pr_title,
commit_description=commit_description,
create_pr=True,
token=token,
)
yield f"✅ Custom PR created successfully: https://huggingface.co/{custom_repo_id}/discussions/{custom_pr.pr_num}"
yield custom_pr
except Exception as e:
yield f"❌ Failed to create PR in custom repository: {e}"
raise
def convert(
api: "HfApi",
model_id: str,
task_or_pipeline: str,
model_type: str = "transformers",
token: str = None,
pr_options: Dict = None,
pipeline_name: str = None,
) -> Generator[Tuple[str, Any], None, None]:
if pr_options is None:
pr_options = {}
info = api.model_info(model_id, token=token)
filenames = {s.rfilename for s in info.siblings}
requesting_user = api.whoami(token=token)["name"]
if not any(pr_options.values()):
yield "1", "⚠️ No option selected. Please choose at least one option."
return
if pr_options.get("create_custom_pr") and not pr_options.get("custom_repo_id"):
yield "1", "⚠️ Custom PR selected but no repository ID was provided."
return
yield "0", f"🚀 Starting export process with options: {pr_options}..."
if task_or_pipeline == "auto" and model_type == "transformers":
try:
task_or_pipeline = TasksManager.infer_task_from_model(model_id, token=token)
except Exception as e:
raise Exception(f"❌ Could not infer task for model {model_id}: {e}")
with TemporaryDirectory() as temp_dir:
export_folder = os.path.join(temp_dir, "export")
cache_mirror_dir = os.path.join(temp_dir, "cache_mirror")
os.makedirs(export_folder, exist_ok=True)
os.makedirs(cache_mirror_dir, exist_ok=True)
result_info = {}
try:
# --- Export Logic ---
export_gen = export_and_git_add(model_id, task_or_pipeline, model_type, export_folder, token=token, pipeline_name=pipeline_name)
operations = None
for message in export_gen:
if isinstance(message, tuple) and message[0] == "__RETURN__":
operations = message[1]
break
else:
yield "0", message
if not operations:
raise Exception("Export process did not produce any files to commit.")
# --- Cache Handling ---
if pr_options.get("create_cache_pr"):
yield "0", f"📤 Creating a Pull Request for the cache repository ..."
try:
pr_title = f"Add Neuron cache artifacts for {model_id}"
custom_pr_description = f"""
🤖 **Neuron Cache Sync Bot**
This PR adds newly compiled cache artifacts for the model:
- **Original Model ID:** `{model_id}`
- **Task:** `{task_or_pipeline}`
These files were generated to accelerate model loading on AWS Neuron devices.
"""
# 1. Create an instance of your generator
commit_message = f"Synchronizing local compiler cache of {model_id}"
inputs = get_default_inputs(task_or_pipeline, pipeline_name)
commit_description = f"""
🤖 **Neuron Cache Sync Bot**
This commit adds newly compiled cache artifacts for the model:
- **Original Model ID:** `{model_id}`
- **Task:** `{task_or_pipeline}`
- **Compilation inputs:** {inputs}
- **Generated by:** [{requesting_user}](https://huggingface.co/{requesting_user})
- **Generated using:** [Optimum Neuron Model Exporter]({SPACES_URL})
These files were generated to accelerate model loading on AWS Neuron devices.
"""
pr_generator = synchronize_hub_cache_with_pr(
cache_repo_id=CUSTOM_CACHE_REPO,
commit_message=commit_message,
commit_description=commit_description,
token=token,
)
pr_url = None
# 2. Loop to process yielded status messages and capture the final return value
while True:
try:
# Get the next status message from your generator
status_message = next(pr_generator)
yield "0", status_message
except StopIteration as e:
# The generator is finished. Its `return` value is in e.value.
pr_url = e.value
break # Exit the loop
# 3. Process the final result
if pr_url:
yield "0", f"✅ Successfully captured PR URL."
result_info["cache_pr"] = pr_url
else:
yield "0", "⚠️ PR process finished, but no URL was returned. This may be expected in non-blocking mode."
except Exception as e:
yield "0", f"❌ Failed to create cache PR: {e}"
# --- New Repository Creation (Replaces Model PR) ---
if pr_options.get("create_neuron_repo"):
yield "0", "🏗️ Creating new Neuron-optimized repository..."
neuron_repo_url = None
# Generate the repo name first so we can use it consistently
neuron_repo_name = generate_neuron_repo_name(api, model_id, task_or_pipeline, token)
repo_creation_gen = create_neuron_repo_and_upload(
operations, model_id, model_type, task_or_pipeline, requesting_user, token, pipeline_name
)
for msg in repo_creation_gen:
if isinstance(msg, str):
yield "0", msg
else:
neuron_repo_url = msg
result_info["neuron_repo"] = f"https://huggingface.co/{neuron_repo_name}"
# Automatically create a PR on the original model to add a link
readme_pr = None
readme_pr_gen = create_readme_pr_for_original_model(
model_id, neuron_repo_name, task_or_pipeline, requesting_user, token
)
for msg in readme_pr_gen:
if isinstance(msg, str):
yield "0", msg
else:
readme_pr = msg
if readme_pr:
result_info["readme_pr"] = f"https://huggingface.co/{model_id}/discussions/{readme_pr.pr_num}"
# --- Custom Repository PR ---
if pr_options.get("create_custom_pr"):
custom_repo_id = pr_options["custom_repo_id"]
yield "0", f"📤 Creating PR in custom repository: {custom_repo_id}..."
custom_pr = None
custom_upload_gen = upload_to_custom_repo(operations, custom_repo_id, model_id, requesting_user, token)
for msg in custom_upload_gen:
if isinstance(msg, str):
yield "0", msg
else:
custom_pr = msg
if custom_pr:
result_info["custom_pr"] = f"https://huggingface.co/{custom_repo_id}/discussions/{custom_pr.pr_num}"
yield "0", result_info
except Exception as e:
yield "1", f"❌ Conversion failed with a critical error: {e}"
# Re-raise the exception to be caught by the outer try-except in the Gradio app if needed
raise |