File size: 13,145 Bytes
b0e9cd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
# Primero, voy a crear el c贸digo completo para el Hugging Face Space
# que cumpla con todos los requisitos mencionados
app_py_code = '''
import gradio as gr
import asyncio
import queue
import threading
import time
import os
from typing import List, Dict, Optional, Generator, Tuple
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import torch
import json
from datetime import datetime
class LlamaChat:
def __init__(self):
self.model_name = "meta-llama/Llama-3.2-3B-Instruct"
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.tokenizer = None
self.model = None
self.request_queue = queue.Queue()
self.is_processing = False
self.current_streamer = None
# Inicializar modelo
self._load_model()
# Iniciar worker thread para procesar colas
self.worker_thread = threading.Thread(target=self._queue_worker, daemon=True)
self.worker_thread.start()
def _load_model(self):
"""Cargar el modelo y tokenizer con el token de HF"""
try:
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
raise ValueError("HF_TOKEN no encontrado en variables de entorno")
print(f"Cargando modelo {self.model_name}...")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
token=hf_token,
trust_remote_code=True
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
token=hf_token,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
device_map="auto" if self.device == "cuda" else None,
trust_remote_code=True
)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
print("Modelo cargado exitosamente!")
except Exception as e:
print(f"Error cargando modelo: {e}")
raise
def _format_messages(self, system_prompt: str, message: str, history: List[List[str]]) -> str:
"""Formatear mensajes para Llama-3.2-Instruct"""
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
# Agregar historial
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
# Agregar mensaje actual
messages.append({"role": "user", "content": message})
# Usar el chat template del tokenizer
formatted_prompt = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
return formatted_prompt
def _queue_worker(self):
"""Worker thread para procesar cola de requests"""
while True:
try:
if not self.request_queue.empty():
request = self.request_queue.get()
self.is_processing = True
self._process_request(request)
self.is_processing = False
self.request_queue.task_done()
else:
time.sleep(0.1)
except Exception as e:
print(f"Error en queue worker: {e}")
self.is_processing = False
def _process_request(self, request: Dict):
"""Procesar una request individual"""
try:
system_prompt = request["system_prompt"]
message = request["message"]
history = request["history"]
max_tokens = request.get("max_tokens", 512)
temperature = request.get("temperature", 0.7)
response_callback = request["callback"]
# Formatear prompt
formatted_prompt = self._format_messages(system_prompt, message, history)
# Tokenizar
inputs = self.tokenizer(
formatted_prompt,
return_tensors="pt",
truncation=True,
max_length=2048
).to(self.device)
# Configurar streamer
streamer = TextIteratorStreamer(
self.tokenizer,
timeout=60,
skip_prompt=True,
skip_special_tokens=True
)
self.current_streamer = streamer
# Configurar par谩metros de generaci贸n
generation_kwargs = {
**inputs,
"max_new_tokens": max_tokens,
"temperature": temperature,
"do_sample": True,
"pad_token_id": self.tokenizer.eos_token_id,
"streamer": streamer,
"repetition_penalty": 1.1
}
# Generar en thread separado
def generate():
with torch.no_grad():
self.model.generate(**generation_kwargs)
generation_thread = threading.Thread(target=generate)
generation_thread.start()
# Stream respuesta
full_response = ""
for new_text in streamer:
if new_text:
full_response += new_text
response_callback(full_response, False)
response_callback(full_response, True)
generation_thread.join()
except Exception as e:
print(f"Error procesando request: {e}")
response_callback(f"Error: {str(e)}", True)
finally:
self.current_streamer = None
def chat_stream(self, system_prompt: str, message: str, history: List[List[str]],
max_tokens: int = 512, temperature: float = 0.7) -> Generator[Tuple[str, bool], None, None]:
"""M茅todo principal para chatear con streaming"""
if not message.strip():
yield "Por favor, escribe un mensaje.", True
return
# Crear evento para comunicaci贸n con el worker
response_queue = queue.Queue()
response_complete = threading.Event()
current_response = [""]
def response_callback(text: str, is_complete: bool):
current_response[0] = text
response_queue.put((text, is_complete))
if is_complete:
response_complete.set()
# Agregar request a la cola
request = {
"system_prompt": system_prompt or "",
"message": message,
"history": history or [],
"max_tokens": max_tokens,
"temperature": temperature,
"callback": response_callback
}
self.request_queue.put(request)
# Esperar y streamear respuesta
while not response_complete.is_set():
try:
text, is_complete = response_queue.get(timeout=0.1)
yield text, is_complete
if is_complete:
break
except queue.Empty:
# Si no hay nuevos tokens, yield el 煤ltimo estado
if current_response[0]:
yield current_response[0], False
continue
def get_queue_status(self) -> Dict[str, any]:
"""Obtener estado de la cola"""
return {
"queue_size": self.request_queue.qsize(),
"is_processing": self.is_processing,
"timestamp": datetime.now().isoformat()
}
# Inicializar el chat
chat_instance = LlamaChat()
# Funci贸n para la interfaz de Gradio
def chat_interface(message: str, history: List[List[str]], system_prompt: str,
max_tokens: int, temperature: float):
"""Interfaz de chat para Gradio"""
for response, is_complete in chat_instance.chat_stream(
system_prompt, message, history, max_tokens, temperature
):
if not is_complete:
# Para Gradio, necesitamos devolver el historial completo
new_history = history + [[message, response]]
yield new_history, ""
else:
final_history = history + [[message, response]]
yield final_history, ""
# Funci贸n para API Python
def api_chat(system_prompt: str = "", message: str = "", history: List[List[str]] = None,
max_tokens: int = 512, temperature: float = 0.7) -> Dict:
"""API para cliente Python"""
if history is None:
history = []
full_response = ""
for response, is_complete in chat_instance.chat_stream(
system_prompt, message, history, max_tokens, temperature
):
full_response = response
if is_complete:
break
return {
"response": full_response,
"queue_status": chat_instance.get_queue_status()
}
# Funci贸n para streaming API
def api_chat_stream(system_prompt: str = "", message: str = "", history: List[List[str]] = None,
max_tokens: int = 512, temperature: float = 0.7):
"""API streaming para cliente Python"""
if history is None:
history = []
for response, is_complete in chat_instance.chat_stream(
system_prompt, message, history, max_tokens, temperature
):
yield {
"response": response,
"is_complete": is_complete,
"queue_status": chat_instance.get_queue_status()
}
# Crear interfaz de Gradio
with gr.Blocks(title="Llama 3.2 3B Chat", theme=gr.themes.Soft()) as app:
gr.Markdown("# 馃 Llama 3.2 3B Instruct Chat")
gr.Markdown("Chat con Meta Llama 3.2 3B con sistema de colas y streaming")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(height=500, show_label=False)
msg = gr.Textbox(
label="Mensaje",
placeholder="Escribe tu mensaje aqu铆...",
lines=2
)
with gr.Row():
send_btn = gr.Button("Enviar", variant="primary")
clear_btn = gr.Button("Limpiar")
with gr.Column(scale=1):
system_prompt = gr.Textbox(
label="System Prompt",
placeholder="Eres un asistente 煤til...",
lines=5,
value="Eres un asistente de IA 煤til y amigable. Responde de manera clara y concisa."
)
max_tokens = gr.Slider(
minimum=50,
maximum=1024,
value=512,
step=50,
label="Max Tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
gr.Markdown("### Estado de la Cola")
queue_status = gr.JSON(label="Queue Status", value={})
# Bot贸n para actualizar estado
refresh_btn = gr.Button("Actualizar Estado")
# Event handlers
def send_message(message, history, sys_prompt, max_tok, temp):
if not message.strip():
return history, ""
yield from chat_interface(message, history, sys_prompt, max_tok, temp)
def clear_chat():
return [], ""
def update_queue_status():
return chat_instance.get_queue_status()
# Conectar eventos
send_btn.click(
send_message,
inputs=[msg, chatbot, system_prompt, max_tokens, temperature],
outputs=[chatbot, msg]
)
msg.submit(
send_message,
inputs=[msg, chatbot, system_prompt, max_tokens, temperature],
outputs=[chatbot, msg]
)
clear_btn.click(clear_chat, outputs=[chatbot, msg])
refresh_btn.click(update_queue_status, outputs=[queue_status])
# Actualizar estado cada 5 segundos
app.load(update_queue_status, outputs=[queue_status], every=5)
# Crear API endpoints
api_app = gr.Interface(
fn=api_chat,
inputs=[
gr.Textbox(label="System Prompt"),
gr.Textbox(label="Message"),
gr.JSON(label="History"),
gr.Slider(50, 1024, 512, label="Max Tokens"),
gr.Slider(0.1, 2.0, 0.7, label="Temperature")
],
outputs=gr.JSON(label="Response"),
title="Llama Chat API",
description="API endpoint para cliente Python"
)
# Combinar apps
final_app = gr.TabbedInterface(
[app, api_app],
["馃挰 Chat Interface", "馃攲 API Endpoint"]
)
if __name__ == "__main__":
final_app.launch(server_name="0.0.0.0", server_port=7860, share=True)
'''
print("C贸digo generado para app.py")
print("=" * 50) |