File size: 13,145 Bytes
b0e9cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# Primero, voy a crear el c贸digo completo para el Hugging Face Space
# que cumpla con todos los requisitos mencionados

app_py_code = '''
import gradio as gr
import asyncio
import queue
import threading
import time
import os
from typing import List, Dict, Optional, Generator, Tuple
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import torch
import json
from datetime import datetime

class LlamaChat:
    def __init__(self):
        self.model_name = "meta-llama/Llama-3.2-3B-Instruct"
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.tokenizer = None
        self.model = None
        self.request_queue = queue.Queue()
        self.is_processing = False
        self.current_streamer = None
        
        # Inicializar modelo
        self._load_model()
        
        # Iniciar worker thread para procesar colas
        self.worker_thread = threading.Thread(target=self._queue_worker, daemon=True)
        self.worker_thread.start()
    
    def _load_model(self):
        """Cargar el modelo y tokenizer con el token de HF"""
        try:
            hf_token = os.environ.get("HF_TOKEN")
            if not hf_token:
                raise ValueError("HF_TOKEN no encontrado en variables de entorno")
            
            print(f"Cargando modelo {self.model_name}...")
            self.tokenizer = AutoTokenizer.from_pretrained(
                self.model_name, 
                token=hf_token,
                trust_remote_code=True
            )
            
            self.model = AutoModelForCausalLM.from_pretrained(
                self.model_name,
                token=hf_token,
                torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
                device_map="auto" if self.device == "cuda" else None,
                trust_remote_code=True
            )
            
            if self.tokenizer.pad_token is None:
                self.tokenizer.pad_token = self.tokenizer.eos_token
                
            print("Modelo cargado exitosamente!")
            
        except Exception as e:
            print(f"Error cargando modelo: {e}")
            raise
    
    def _format_messages(self, system_prompt: str, message: str, history: List[List[str]]) -> str:
        """Formatear mensajes para Llama-3.2-Instruct"""
        messages = []
        
        if system_prompt:
            messages.append({"role": "system", "content": system_prompt})
        
        # Agregar historial
        for user_msg, assistant_msg in history:
            messages.append({"role": "user", "content": user_msg})
            messages.append({"role": "assistant", "content": assistant_msg})
        
        # Agregar mensaje actual
        messages.append({"role": "user", "content": message})
        
        # Usar el chat template del tokenizer
        formatted_prompt = self.tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        
        return formatted_prompt
    
    def _queue_worker(self):
        """Worker thread para procesar cola de requests"""
        while True:
            try:
                if not self.request_queue.empty():
                    request = self.request_queue.get()
                    self.is_processing = True
                    self._process_request(request)
                    self.is_processing = False
                    self.request_queue.task_done()
                else:
                    time.sleep(0.1)
            except Exception as e:
                print(f"Error en queue worker: {e}")
                self.is_processing = False
    
    def _process_request(self, request: Dict):
        """Procesar una request individual"""
        try:
            system_prompt = request["system_prompt"]
            message = request["message"]
            history = request["history"]
            max_tokens = request.get("max_tokens", 512)
            temperature = request.get("temperature", 0.7)
            response_callback = request["callback"]
            
            # Formatear prompt
            formatted_prompt = self._format_messages(system_prompt, message, history)
            
            # Tokenizar
            inputs = self.tokenizer(
                formatted_prompt,
                return_tensors="pt",
                truncation=True,
                max_length=2048
            ).to(self.device)
            
            # Configurar streamer
            streamer = TextIteratorStreamer(
                self.tokenizer,
                timeout=60,
                skip_prompt=True,
                skip_special_tokens=True
            )
            self.current_streamer = streamer
            
            # Configurar par谩metros de generaci贸n
            generation_kwargs = {
                **inputs,
                "max_new_tokens": max_tokens,
                "temperature": temperature,
                "do_sample": True,
                "pad_token_id": self.tokenizer.eos_token_id,
                "streamer": streamer,
                "repetition_penalty": 1.1
            }
            
            # Generar en thread separado
            def generate():
                with torch.no_grad():
                    self.model.generate(**generation_kwargs)
            
            generation_thread = threading.Thread(target=generate)
            generation_thread.start()
            
            # Stream respuesta
            full_response = ""
            for new_text in streamer:
                if new_text:
                    full_response += new_text
                    response_callback(full_response, False)
            
            response_callback(full_response, True)
            generation_thread.join()
            
        except Exception as e:
            print(f"Error procesando request: {e}")
            response_callback(f"Error: {str(e)}", True)
        finally:
            self.current_streamer = None
    
    def chat_stream(self, system_prompt: str, message: str, history: List[List[str]], 
                   max_tokens: int = 512, temperature: float = 0.7) -> Generator[Tuple[str, bool], None, None]:
        """M茅todo principal para chatear con streaming"""
        if not message.strip():
            yield "Por favor, escribe un mensaje.", True
            return
        
        # Crear evento para comunicaci贸n con el worker
        response_queue = queue.Queue()
        response_complete = threading.Event()
        current_response = [""]
        
        def response_callback(text: str, is_complete: bool):
            current_response[0] = text
            response_queue.put((text, is_complete))
            if is_complete:
                response_complete.set()
        
        # Agregar request a la cola
        request = {
            "system_prompt": system_prompt or "",
            "message": message,
            "history": history or [],
            "max_tokens": max_tokens,
            "temperature": temperature,
            "callback": response_callback
        }
        
        self.request_queue.put(request)
        
        # Esperar y streamear respuesta
        while not response_complete.is_set():
            try:
                text, is_complete = response_queue.get(timeout=0.1)
                yield text, is_complete
                if is_complete:
                    break
            except queue.Empty:
                # Si no hay nuevos tokens, yield el 煤ltimo estado
                if current_response[0]:
                    yield current_response[0], False
                continue
    
    def get_queue_status(self) -> Dict[str, any]:
        """Obtener estado de la cola"""
        return {
            "queue_size": self.request_queue.qsize(),
            "is_processing": self.is_processing,
            "timestamp": datetime.now().isoformat()
        }

# Inicializar el chat
chat_instance = LlamaChat()

# Funci贸n para la interfaz de Gradio
def chat_interface(message: str, history: List[List[str]], system_prompt: str, 
                  max_tokens: int, temperature: float):
    """Interfaz de chat para Gradio"""
    for response, is_complete in chat_instance.chat_stream(
        system_prompt, message, history, max_tokens, temperature
    ):
        if not is_complete:
            # Para Gradio, necesitamos devolver el historial completo
            new_history = history + [[message, response]]
            yield new_history, ""
        else:
            final_history = history + [[message, response]]
            yield final_history, ""

# Funci贸n para API Python
def api_chat(system_prompt: str = "", message: str = "", history: List[List[str]] = None, 
            max_tokens: int = 512, temperature: float = 0.7) -> Dict:
    """API para cliente Python"""
    if history is None:
        history = []
    
    full_response = ""
    for response, is_complete in chat_instance.chat_stream(
        system_prompt, message, history, max_tokens, temperature
    ):
        full_response = response
        if is_complete:
            break
    
    return {
        "response": full_response,
        "queue_status": chat_instance.get_queue_status()
    }

# Funci贸n para streaming API
def api_chat_stream(system_prompt: str = "", message: str = "", history: List[List[str]] = None,
                   max_tokens: int = 512, temperature: float = 0.7):
    """API streaming para cliente Python"""
    if history is None:
        history = []
    
    for response, is_complete in chat_instance.chat_stream(
        system_prompt, message, history, max_tokens, temperature
    ):
        yield {
            "response": response,
            "is_complete": is_complete,
            "queue_status": chat_instance.get_queue_status()
        }

# Crear interfaz de Gradio
with gr.Blocks(title="Llama 3.2 3B Chat", theme=gr.themes.Soft()) as app:
    gr.Markdown("# 馃 Llama 3.2 3B Instruct Chat")
    gr.Markdown("Chat con Meta Llama 3.2 3B con sistema de colas y streaming")
    
    with gr.Row():
        with gr.Column(scale=3):
            chatbot = gr.Chatbot(height=500, show_label=False)
            msg = gr.Textbox(
                label="Mensaje",
                placeholder="Escribe tu mensaje aqu铆...",
                lines=2
            )
            
            with gr.Row():
                send_btn = gr.Button("Enviar", variant="primary")
                clear_btn = gr.Button("Limpiar")
        
        with gr.Column(scale=1):
            system_prompt = gr.Textbox(
                label="System Prompt",
                placeholder="Eres un asistente 煤til...",
                lines=5,
                value="Eres un asistente de IA 煤til y amigable. Responde de manera clara y concisa."
            )
            
            max_tokens = gr.Slider(
                minimum=50,
                maximum=1024,
                value=512,
                step=50,
                label="Max Tokens"
            )
            
            temperature = gr.Slider(
                minimum=0.1,
                maximum=2.0,
                value=0.7,
                step=0.1,
                label="Temperature"
            )
            
            gr.Markdown("### Estado de la Cola")
            queue_status = gr.JSON(label="Queue Status", value={})
            
            # Bot贸n para actualizar estado
            refresh_btn = gr.Button("Actualizar Estado")
    
    # Event handlers
    def send_message(message, history, sys_prompt, max_tok, temp):
        if not message.strip():
            return history, ""
        
        yield from chat_interface(message, history, sys_prompt, max_tok, temp)
    
    def clear_chat():
        return [], ""
    
    def update_queue_status():
        return chat_instance.get_queue_status()
    
    # Conectar eventos
    send_btn.click(
        send_message,
        inputs=[msg, chatbot, system_prompt, max_tokens, temperature],
        outputs=[chatbot, msg]
    )
    
    msg.submit(
        send_message,
        inputs=[msg, chatbot, system_prompt, max_tokens, temperature],
        outputs=[chatbot, msg]
    )
    
    clear_btn.click(clear_chat, outputs=[chatbot, msg])
    refresh_btn.click(update_queue_status, outputs=[queue_status])
    
    # Actualizar estado cada 5 segundos
    app.load(update_queue_status, outputs=[queue_status], every=5)

# Crear API endpoints
api_app = gr.Interface(
    fn=api_chat,
    inputs=[
        gr.Textbox(label="System Prompt"),
        gr.Textbox(label="Message"),
        gr.JSON(label="History"),
        gr.Slider(50, 1024, 512, label="Max Tokens"),
        gr.Slider(0.1, 2.0, 0.7, label="Temperature")
    ],
    outputs=gr.JSON(label="Response"),
    title="Llama Chat API",
    description="API endpoint para cliente Python"
)

# Combinar apps
final_app = gr.TabbedInterface(
    [app, api_app],
    ["馃挰 Chat Interface", "馃攲 API Endpoint"]
)

if __name__ == "__main__":
    final_app.launch(server_name="0.0.0.0", server_port=7860, share=True)
'''

print("C贸digo generado para app.py")
print("=" * 50)