Spaces:
Running
Running
| import gradio as gr | |
| import spaces | |
| import json | |
| import re | |
| from gradio_client import Client | |
| kosmos2_client = Client("https://ydshieh-kosmos-2.hf.space/") | |
| def get_caption(image_in): | |
| kosmos2_result = kosmos2_client.predict( | |
| image_in, # str (filepath or URL to image) in 'Test Image' Image component | |
| "Detailed", # str in 'Description Type' Radio component | |
| fn_index=4 | |
| ) | |
| print(f"KOSMOS2 RETURNS: {kosmos2_result}") | |
| with open(kosmos2_result[1], 'r') as f: | |
| data = json.load(f) | |
| reconstructed_sentence = [] | |
| for sublist in data: | |
| reconstructed_sentence.append(sublist[0]) | |
| full_sentence = ' '.join(reconstructed_sentence) | |
| #print(full_sentence) | |
| # Find the pattern matching the expected format ("Describe this image in detail:" followed by optional space and then the rest)... | |
| pattern = r'^Describe this image in detail:\s*(.*)$' | |
| # Apply the regex pattern to extract the description text. | |
| match = re.search(pattern, full_sentence) | |
| if match: | |
| description = match.group(1) | |
| print(description) | |
| else: | |
| print("Unable to locate valid description.") | |
| # Find the last occurrence of "." | |
| #last_period_index = full_sentence.rfind('.') | |
| # Truncate the string up to the last period | |
| #truncated_caption = full_sentence[:last_period_index + 1] | |
| # print(truncated_caption) | |
| #print(f"\n—\nIMAGE CAPTION: {truncated_caption}") | |
| return description | |
| def get_caption_from_MD(image_in): | |
| client = Client("https://vikhyatk-moondream1.hf.space/") | |
| result = client.predict( | |
| image_in, # filepath in 'image' Image component | |
| "Describe precisely the image.", # str in 'Question' Textbox component | |
| api_name="/answer_question" | |
| ) | |
| print(result) | |
| return result | |
| def get_magnet(prompt): | |
| client = Client("https://fffiloni-magnet.hf.space/") | |
| result = client.predict( | |
| "facebook/magnet-medium-10secs", # Literal['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs', 'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs', 'facebook/audio-magnet-small', 'facebook/audio-magnet-medium'] in 'Model' Radio component | |
| "", # str in 'Model Path (custom models)' Textbox component | |
| prompt, # str in 'Input Text' Textbox component | |
| 3, # float in 'Temperature' Number component | |
| 0.9, # float in 'Top-p' Number component | |
| 10, # float in 'Max CFG coefficient' Number component | |
| 1, # float in 'Min CFG coefficient' Number component | |
| 20, # float in 'Decoding Steps (stage 1)' Number component | |
| 10, # float in 'Decoding Steps (stage 2)' Number component | |
| 10, # float in 'Decoding Steps (stage 3)' Number component | |
| 10, # float in 'Decoding Steps (stage 4)' Number component | |
| "prod-stride1 (new!)", # Literal['max-nonoverlap', 'prod-stride1 (new!)'] in 'Span Scoring' Radio component | |
| api_name="/predict_full" | |
| ) | |
| print(result) | |
| return result[1] | |
| import re | |
| import torch | |
| from transformers import pipeline | |
| zephyr_model = "HuggingFaceH4/zephyr-7b-beta" | |
| mixtral_model = "mistralai/Mixtral-8x7B-Instruct-v0.1" | |
| pipe = pipeline("text-generation", model=zephyr_model, torch_dtype=torch.bfloat16, device_map="auto") | |
| agent_maker_sys = f""" | |
| You are an AI whose job is to help users create their own music which its genre will reflect the character or scene from an image described by users. | |
| In particular, you need to respond succintly with few musical words, in a friendly tone, write a musical prompt for a music generation model. | |
| For example, if a user says, "a picture of a man in a black suit and tie riding a black dragon", provide immediately a musical prompt corresponding to the image description. | |
| Immediately STOP after that. It should be EXACTLY in this format: | |
| "A grand orchestral arrangement with thunderous percussion, epic brass fanfares, and soaring strings, creating a cinematic atmosphere fit for a heroic battle" | |
| """ | |
| instruction = f""" | |
| <|system|> | |
| {agent_maker_sys}</s> | |
| <|user|> | |
| """ | |
| def get_musical_prompt(user_prompt): | |
| prompt = f"{instruction.strip()}\n{user_prompt}</s>" | |
| outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) | |
| pattern = r'\<\|system\|\>(.*?)\<\|assistant\|\>' | |
| cleaned_text = re.sub(pattern, '', outputs[0]["generated_text"], flags=re.DOTALL) | |
| print(f"SUGGESTED Musical prompt: {cleaned_text}") | |
| return cleaned_text.lstrip("\n") | |
| def infer(image_in): | |
| gr.Info("Getting image caption with Kosmos2...") | |
| user_prompt = get_caption(image_in) | |
| gr.Info("Building a musical prompt according to the image caption ...") | |
| musical_prompt = get_musical_prompt(user_prompt) | |
| gr.Info("Now calling MAGNet for music ...") | |
| music_o = get_magnet(musical_prompt) | |
| return musical_prompt, music_o | |
| demo_title = "Image to Music V2" | |
| description = "Get music from a picture" | |
| css = """ | |
| #col-container{ | |
| margin: 0 auto; | |
| max-width: 980px; | |
| text-align: left; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.HTML(f""" | |
| <h2 style="text-align: center;">{demo_title}</h2> | |
| <p style="text-align: center;">{description}</p> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_in = gr.Image( | |
| label = "Image reference", | |
| type = "filepath", | |
| elem_id = "image-in" | |
| ) | |
| submit_btn = gr.Button("Make music from my pic !") | |
| with gr.Column(): | |
| caption = gr.Textbox( | |
| label = "Musical prompt", | |
| max_lines = 3 | |
| ) | |
| result = gr.Audio( | |
| label = "Music" | |
| ) | |
| with gr.Column(): | |
| gr.Examples( | |
| examples = [ | |
| ["examples/monalisa.png"], | |
| ["examples/santa.png"], | |
| ["examples/ocean_poet.jpeg"], | |
| ["examples/winter_hiking.png"], | |
| ["examples/teatime.jpeg"], | |
| ["examples/news_experts.jpeg"], | |
| ["examples/chicken_adobo.jpeg"] | |
| ], | |
| fn = infer, | |
| inputs = [image_in], | |
| outputs = [caption, result], | |
| cache_examples = False | |
| ) | |
| submit_btn.click( | |
| fn = infer, | |
| inputs = [ | |
| image_in | |
| ], | |
| outputs =[ | |
| caption, | |
| result | |
| ] | |
| ) | |
| demo.queue().launch(show_api=False) |