Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import VolumeMaker
|
| 2 |
+
import utils
|
| 3 |
+
import numpy as np
|
| 4 |
+
import random
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import shutil
|
| 9 |
+
import subprocess
|
| 10 |
+
from transformers import AutoModelForSequenceClassification
|
| 11 |
+
from torch.utils.data import Dataset,DataLoader
|
| 12 |
+
import pandas as pd
|
| 13 |
+
device = torch.device("cpu")
|
| 14 |
+
import os
|
| 15 |
+
join=os.path.join
|
| 16 |
+
from transformers import AutoTokenizer
|
| 17 |
+
import torch.nn.functional as F
|
| 18 |
+
from rdkit import Chem
|
| 19 |
+
from rdkit.Chem import AllChem
|
| 20 |
+
from collections import OrderedDict
|
| 21 |
+
from tqdm import tqdm
|
| 22 |
+
import time
|
| 23 |
+
|
| 24 |
+
model_checkpoint = "facebook/esm2_t6_8M_UR50D"
|
| 25 |
+
pdb_path = "structure"
|
| 26 |
+
# seq_path = "test3.csv"
|
| 27 |
+
temp_path = "temp"
|
| 28 |
+
|
| 29 |
+
def setup_seed(seed):
|
| 30 |
+
torch.manual_seed(seed)
|
| 31 |
+
torch.cuda.manual_seed_all(seed)
|
| 32 |
+
np.random.seed(seed)
|
| 33 |
+
random.seed(seed)
|
| 34 |
+
torch.backends.cudnn.deterministic = True
|
| 35 |
+
setup_seed(4)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
batch_size = 1
|
| 39 |
+
num_labels = 2
|
| 40 |
+
radius = 2
|
| 41 |
+
n_features = 1024
|
| 42 |
+
hid_dim = 300
|
| 43 |
+
n_heads = 1
|
| 44 |
+
dropout = 0
|
| 45 |
+
|
| 46 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
| 47 |
+
|
| 48 |
+
class MyDataset(Dataset):
|
| 49 |
+
def __init__(self,dict_data) -> None:
|
| 50 |
+
super(MyDataset,self).__init__()
|
| 51 |
+
self.data=dict_data
|
| 52 |
+
self.structure=pdb_structure(dict_data['structure'])
|
| 53 |
+
def __getitem__(self, index):
|
| 54 |
+
return self.data['text'][index], self.structure[index]
|
| 55 |
+
def __len__(self):
|
| 56 |
+
return len(self.data['text'])
|
| 57 |
+
|
| 58 |
+
def collate_fn(batch):
|
| 59 |
+
data = [item[0] for item in batch]
|
| 60 |
+
structure = torch.tensor([item[1].tolist() for item in batch]).to(device)
|
| 61 |
+
max_len = max([len(b[0]) for b in batch])+2
|
| 62 |
+
fingerprint = torch.tensor(peptides_to_fingerprint_matrix(data, radius, n_features),dtype=float).to(device)
|
| 63 |
+
pt_batch=tokenizer(data, padding=True, truncation=True, max_length=max_len, return_tensors='pt')
|
| 64 |
+
return {'input_ids':pt_batch['input_ids'].to(device),
|
| 65 |
+
'attention_mask':pt_batch['attention_mask'].to(device)}, structure, fingerprint
|
| 66 |
+
|
| 67 |
+
class AttentionBlock(nn.Module):
|
| 68 |
+
def __init__(self, hid_dim, n_heads, dropout):
|
| 69 |
+
super().__init__()
|
| 70 |
+
|
| 71 |
+
self.hid_dim = hid_dim
|
| 72 |
+
self.n_heads = n_heads
|
| 73 |
+
|
| 74 |
+
assert hid_dim % n_heads == 0
|
| 75 |
+
|
| 76 |
+
self.f_q = nn.Linear(hid_dim, hid_dim)
|
| 77 |
+
self.f_k = nn.Linear(hid_dim, hid_dim)
|
| 78 |
+
self.f_v = nn.Linear(hid_dim, hid_dim)
|
| 79 |
+
|
| 80 |
+
self.fc = nn.Linear(hid_dim, hid_dim)
|
| 81 |
+
|
| 82 |
+
self.do = nn.Dropout(dropout)
|
| 83 |
+
|
| 84 |
+
self.scale = torch.sqrt(torch.FloatTensor([hid_dim // n_heads])).cuda()
|
| 85 |
+
|
| 86 |
+
def forward(self, query, key, value, mask=None):
|
| 87 |
+
batch_size = query.shape[0]
|
| 88 |
+
|
| 89 |
+
Q = self.f_q(query)
|
| 90 |
+
K = self.f_k(key)
|
| 91 |
+
V = self.f_v(value)
|
| 92 |
+
|
| 93 |
+
Q = Q.view(batch_size, self.n_heads, self.hid_dim // self.n_heads).unsqueeze(3)
|
| 94 |
+
K_T = K.view(batch_size, self.n_heads, self.hid_dim // self.n_heads).unsqueeze(3).transpose(2,3)
|
| 95 |
+
V = V.view(batch_size, self.n_heads, self.hid_dim // self.n_heads).unsqueeze(3)
|
| 96 |
+
|
| 97 |
+
energy = torch.matmul(Q, K_T) / self.scale
|
| 98 |
+
|
| 99 |
+
if mask is not None:
|
| 100 |
+
energy = energy.masked_fill(mask == 0, -1e10)
|
| 101 |
+
|
| 102 |
+
attention = self.do(F.softmax(energy, dim=-1))
|
| 103 |
+
|
| 104 |
+
weighter_matrix = torch.matmul(attention, V)
|
| 105 |
+
|
| 106 |
+
weighter_matrix = weighter_matrix.permute(0, 2, 1, 3).contiguous()
|
| 107 |
+
|
| 108 |
+
weighter_matrix = weighter_matrix.view(batch_size, self.n_heads * (self.hid_dim // self.n_heads))
|
| 109 |
+
|
| 110 |
+
weighter_matrix = self.do(self.fc(weighter_matrix))
|
| 111 |
+
|
| 112 |
+
return weighter_matrix
|
| 113 |
+
|
| 114 |
+
class CrossAttentionBlock(nn.Module):
|
| 115 |
+
def __init__(self):
|
| 116 |
+
super(CrossAttentionBlock, self).__init__()
|
| 117 |
+
self.att = AttentionBlock(hid_dim = hid_dim, n_heads = n_heads, dropout=0.1)
|
| 118 |
+
def forward(self, structure_feature, fingerprint_feature, sequence_feature):
|
| 119 |
+
# cross attention for compound information enrichment
|
| 120 |
+
fingerprint_feature = fingerprint_feature + self.att(fingerprint_feature, structure_feature, structure_feature)
|
| 121 |
+
# self-attention
|
| 122 |
+
fingerprint_feature = self.att(fingerprint_feature, fingerprint_feature, fingerprint_feature)
|
| 123 |
+
# cross-attention for interaction
|
| 124 |
+
output = self.att(fingerprint_feature, sequence_feature, sequence_feature)
|
| 125 |
+
return output
|
| 126 |
+
|
| 127 |
+
def peptides_to_fingerprint_matrix(peptides, radius=radius, n_features=n_features):
|
| 128 |
+
n_peptides = len(peptides)
|
| 129 |
+
features = np.zeros((n_peptides, n_features))
|
| 130 |
+
for i, peptide in enumerate(peptides):
|
| 131 |
+
mol = Chem.MolFromSequence(peptide)
|
| 132 |
+
fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_features)
|
| 133 |
+
fp_array = np.zeros((1,))
|
| 134 |
+
AllChem.DataStructs.ConvertToNumpyArray(fp, fp_array)
|
| 135 |
+
features[i, :] = fp_array
|
| 136 |
+
return features
|
| 137 |
+
|
| 138 |
+
class MyModel(nn.Module):
|
| 139 |
+
def __init__(self):
|
| 140 |
+
super().__init__()
|
| 141 |
+
self.bert = AutoModelForSequenceClassification.from_pretrained(model_checkpoint,num_labels=hid_dim)
|
| 142 |
+
self.bn1 = nn.BatchNorm1d(256)
|
| 143 |
+
self.bn2 = nn.BatchNorm1d(128)
|
| 144 |
+
self.bn3 = nn.BatchNorm1d(64)
|
| 145 |
+
self.relu = nn.ReLU()
|
| 146 |
+
self.fc1 = nn.Linear(300,256)
|
| 147 |
+
self.fc2 = nn.Linear(256,128)
|
| 148 |
+
self.fc3 = nn.Linear(128,64)
|
| 149 |
+
self.fc_fingerprint = nn.Linear(1024,hid_dim)
|
| 150 |
+
self.fc_structure = nn.Linear(1500,hid_dim)
|
| 151 |
+
self.fingerprint_lstm = nn.LSTM(bidirectional=True, num_layers=2, input_size=1024, hidden_size=1024//2, batch_first=True)
|
| 152 |
+
self.structure_lstm = nn.LSTM(bidirectional=True, num_layers=2, input_size=500, hidden_size=500//2, batch_first=True)
|
| 153 |
+
self.output_layer = nn.Linear(64,num_labels)
|
| 154 |
+
self.dropout = nn.Dropout(0)
|
| 155 |
+
self.CAB = CrossAttentionBlock()
|
| 156 |
+
def forward(self,structure, x, fingerprint):
|
| 157 |
+
fingerprint = torch.unsqueeze(fingerprint, 2).float()
|
| 158 |
+
structure = structure.permute(0, 2, 1)
|
| 159 |
+
fingerprint = fingerprint.permute(0, 2, 1)
|
| 160 |
+
with torch.no_grad():
|
| 161 |
+
bert_output = self.bert(input_ids=x['input_ids'].to(device),attention_mask=x['attention_mask'].to(device))
|
| 162 |
+
sequence_feature = self.dropout(bert_output["logits"])
|
| 163 |
+
structure = structure.to(device)
|
| 164 |
+
fingerprint_feature, _ = self.fingerprint_lstm(fingerprint)
|
| 165 |
+
structure_feature, _ = self.structure_lstm(structure)
|
| 166 |
+
fingerprint_feature = fingerprint_feature.flatten(start_dim=1)
|
| 167 |
+
structure_feature = structure_feature.flatten(start_dim=1)
|
| 168 |
+
fingerprint_feature = self.fc_fingerprint(fingerprint_feature)
|
| 169 |
+
structure_feature = self.fc_structure(structure_feature)
|
| 170 |
+
output_feature = self.CAB(structure_feature, fingerprint_feature, sequence_feature)
|
| 171 |
+
output_feature = self.dropout(self.relu(self.bn1(self.fc1(output_feature))))
|
| 172 |
+
output_feature = self.dropout(self.relu(self.bn2(self.fc2(output_feature))))
|
| 173 |
+
output_feature = self.dropout(self.relu(self.bn3(self.fc3(output_feature))))
|
| 174 |
+
output_feature = self.dropout(self.output_layer(output_feature))
|
| 175 |
+
return torch.softmax(output_feature,dim=1)
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def pdb_structure(Structure_index):
|
| 179 |
+
created_folders = []
|
| 180 |
+
SurfacePoitCloud_all = []
|
| 181 |
+
for index in Structure_index:
|
| 182 |
+
structure_folder = join(temp_path, str(index))
|
| 183 |
+
os.makedirs(structure_folder, exist_ok=True)
|
| 184 |
+
created_folders.append(structure_folder)
|
| 185 |
+
pdb_file = join(pdb_path, f"{index}.pdb")
|
| 186 |
+
if os.path.exists(pdb_file):
|
| 187 |
+
shutil.copy2(pdb_file, structure_folder)
|
| 188 |
+
else:
|
| 189 |
+
print(f"PDB file not found for structure {index}")
|
| 190 |
+
coords, atname, pdbname, pdb_num = utils.parsePDB(structure_folder)
|
| 191 |
+
atoms_channel = utils.atomlistToChannels(atname)
|
| 192 |
+
radius = utils.atomlistToRadius(atname)
|
| 193 |
+
PointCloudSurfaceObject = VolumeMaker.PointCloudSurface(device=device)
|
| 194 |
+
coords = coords.to(device)
|
| 195 |
+
radius = radius.to(device)
|
| 196 |
+
atoms_channel = atoms_channel.to(device)
|
| 197 |
+
SurfacePoitCloud = PointCloudSurfaceObject(coords, radius)
|
| 198 |
+
feature = SurfacePoitCloud.view(pdb_num,-1,3).cpu()
|
| 199 |
+
SurfacePoitCloud_all.append(feature)
|
| 200 |
+
SurfacePoitCloud_all_tensor = torch.squeeze(torch.stack(SurfacePoitCloud_all),dim=1)
|
| 201 |
+
for folder in created_folders:
|
| 202 |
+
shutil.rmtree(folder)
|
| 203 |
+
return SurfacePoitCloud_all_tensor
|
| 204 |
+
|
| 205 |
+
def ACE(file):
|
| 206 |
+
if not os.path.exists(pdb_path):
|
| 207 |
+
os.makedirs(pdb_path)
|
| 208 |
+
else:
|
| 209 |
+
shutil.rmtree(pdb_path)
|
| 210 |
+
os.makedirs(pdb_path)
|
| 211 |
+
# df = pd.read_csv(seq_path)
|
| 212 |
+
# test_sequences = df["Seq"].tolist()
|
| 213 |
+
# test_Structure_index = df["Structure_index"].tolist()
|
| 214 |
+
|
| 215 |
+
test_sequences = [file]
|
| 216 |
+
test_Structure_index = [f"structure_{i}" for i in range(len(test_sequences))]
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
test_dict = {"text":test_sequences, 'structure':test_Structure_index}
|
| 220 |
+
print("=================================Structure prediction========================")
|
| 221 |
+
for i in tqdm(range(0, len(test_sequences))):
|
| 222 |
+
while True:
|
| 223 |
+
command = ["curl", "-X", "POST", "-k", "--data", f"{test_sequences[i]}", "https://api.esmatlas.com/foldSequence/v1/pdb/"]
|
| 224 |
+
result = subprocess.run(command, capture_output=True, text=True)
|
| 225 |
+
with open(os.path.join(pdb_path, f'{test_Structure_index[i]}.pdb'), 'w') as file:
|
| 226 |
+
file.write(result.stdout)
|
| 227 |
+
stats = os.stat(os.path.join(pdb_path, f'{test_Structure_index[i]}.pdb'))
|
| 228 |
+
if stats.st_size < 1024:
|
| 229 |
+
print(f"Download for {test_Structure_index[i]} failed due to empty file. Retrying...")
|
| 230 |
+
time.sleep(20)
|
| 231 |
+
continue
|
| 232 |
+
else:
|
| 233 |
+
break
|
| 234 |
+
test_data=MyDataset(test_dict)
|
| 235 |
+
test_dataloader=DataLoader(test_data,batch_size=batch_size,collate_fn=collate_fn,shuffle=False)
|
| 236 |
+
|
| 237 |
+
# 导入模型
|
| 238 |
+
model = MyModel()
|
| 239 |
+
model.load_state_dict(torch.load("best_model.pth", map_location=torch.device('cpu')), strict=False)
|
| 240 |
+
model = model.to(device)
|
| 241 |
+
|
| 242 |
+
# 预测
|
| 243 |
+
model.eval()
|
| 244 |
+
with torch.no_grad():
|
| 245 |
+
probability_all = []
|
| 246 |
+
Target_all = []
|
| 247 |
+
print("=================================Start prediction========================")
|
| 248 |
+
for index, (batch, structure_fea, fingerprint) in enumerate(test_dataloader):
|
| 249 |
+
batchs = {k: v for k, v in batch.items()}
|
| 250 |
+
outputs = model(structure_fea, batchs, fingerprint)
|
| 251 |
+
probability = outputs[0].tolist()
|
| 252 |
+
train_argmax = np.argmax(outputs.cpu().detach().numpy(), axis=1)
|
| 253 |
+
for j in range(0,len(train_argmax)):
|
| 254 |
+
output = train_argmax[j]
|
| 255 |
+
if output == 0:
|
| 256 |
+
Target = "low"
|
| 257 |
+
probability = probability[0]
|
| 258 |
+
elif output == 1:
|
| 259 |
+
Target = "high"
|
| 260 |
+
probability = probability[1]
|
| 261 |
+
print(Target, probability)
|
| 262 |
+
probability_all.append(probability)
|
| 263 |
+
Target_all.append(Target)
|
| 264 |
+
summary = OrderedDict()
|
| 265 |
+
summary['Seq'] = test_sequences
|
| 266 |
+
summary['Target'] = Target_all
|
| 267 |
+
summary['Probability'] = probability_all
|
| 268 |
+
summary_df = pd.DataFrame(summary)
|
| 269 |
+
summary_df.to_csv('output.csv', index=False)
|
| 270 |
+
if len(test_sequences) > 1:
|
| 271 |
+
out_text = "Please download csv"
|
| 272 |
+
out_prob = "Please download csv"
|
| 273 |
+
else:
|
| 274 |
+
out_text = output
|
| 275 |
+
out_prob = probability
|
| 276 |
+
return 'outputs.csv', out_text, out_prob
|
| 277 |
+
|
| 278 |
+
iface = gr.Interface(fn=ACE,
|
| 279 |
+
inputs="text",
|
| 280 |
+
outputs= ["file","text","text"])
|
| 281 |
+
iface.launch()
|