37-AN
commited on
Commit
·
48a1a2b
1
Parent(s):
9f0d171
Fix Streamlit cache_resource unhashable parameter error
Browse files- app/core/ingestion.py +93 -47
- app/ui/streamlit_app.py +5 -2
app/core/ingestion.py
CHANGED
|
@@ -1,5 +1,8 @@
|
|
| 1 |
import os
|
| 2 |
import sys
|
|
|
|
|
|
|
|
|
|
| 3 |
from typing import List, Dict, Any
|
| 4 |
from langchain.document_loaders import (
|
| 5 |
PyPDFLoader,
|
|
@@ -8,6 +11,10 @@ from langchain.document_loaders import (
|
|
| 8 |
)
|
| 9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# Add project root to path for imports
|
| 12 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
| 13 |
from app.config import CHUNK_SIZE, CHUNK_OVERLAP
|
|
@@ -22,6 +29,7 @@ class DocumentProcessor:
|
|
| 22 |
chunk_size=CHUNK_SIZE,
|
| 23 |
chunk_overlap=CHUNK_OVERLAP
|
| 24 |
)
|
|
|
|
| 25 |
|
| 26 |
def process_file(self, file_path: str) -> List[str]:
|
| 27 |
"""Process a file and return a list of document chunks."""
|
|
@@ -32,6 +40,8 @@ class DocumentProcessor:
|
|
| 32 |
_, extension = os.path.splitext(file_path)
|
| 33 |
extension = extension.lower()
|
| 34 |
|
|
|
|
|
|
|
| 35 |
# Load the file using the appropriate loader
|
| 36 |
if extension == '.pdf':
|
| 37 |
loader = PyPDFLoader(file_path)
|
|
@@ -46,57 +56,93 @@ class DocumentProcessor:
|
|
| 46 |
documents = loader.load()
|
| 47 |
chunks = self.text_splitter.split_documents(documents)
|
| 48 |
|
|
|
|
| 49 |
return chunks
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
def ingest_file(self, file_path: str, metadata: Dict[str, Any] = None) -> List[str]:
|
| 52 |
"""Ingest a file into the vector database."""
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
metadata
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
def ingest_text(self, text: str, metadata: Dict[str, Any] = None) -> List[str]:
|
| 84 |
"""Ingest raw text into the vector database."""
|
| 85 |
-
|
| 86 |
-
metadata
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
+
import logging
|
| 4 |
+
import time
|
| 5 |
+
import random
|
| 6 |
from typing import List, Dict, Any
|
| 7 |
from langchain.document_loaders import (
|
| 8 |
PyPDFLoader,
|
|
|
|
| 11 |
)
|
| 12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 13 |
|
| 14 |
+
# Configure logging
|
| 15 |
+
logging.basicConfig(level=logging.INFO)
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
# Add project root to path for imports
|
| 19 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
| 20 |
from app.config import CHUNK_SIZE, CHUNK_OVERLAP
|
|
|
|
| 29 |
chunk_size=CHUNK_SIZE,
|
| 30 |
chunk_overlap=CHUNK_OVERLAP
|
| 31 |
)
|
| 32 |
+
logger.info(f"DocumentProcessor initialized with chunk size {CHUNK_SIZE}, overlap {CHUNK_OVERLAP}")
|
| 33 |
|
| 34 |
def process_file(self, file_path: str) -> List[str]:
|
| 35 |
"""Process a file and return a list of document chunks."""
|
|
|
|
| 40 |
_, extension = os.path.splitext(file_path)
|
| 41 |
extension = extension.lower()
|
| 42 |
|
| 43 |
+
logger.info(f"Processing file: {file_path} with extension {extension}")
|
| 44 |
+
|
| 45 |
# Load the file using the appropriate loader
|
| 46 |
if extension == '.pdf':
|
| 47 |
loader = PyPDFLoader(file_path)
|
|
|
|
| 56 |
documents = loader.load()
|
| 57 |
chunks = self.text_splitter.split_documents(documents)
|
| 58 |
|
| 59 |
+
logger.info(f"Split file into {len(chunks)} chunks")
|
| 60 |
return chunks
|
| 61 |
|
| 62 |
+
def _retry_operation(self, operation, max_retries=3):
|
| 63 |
+
"""Retry an operation with exponential backoff."""
|
| 64 |
+
for attempt in range(max_retries):
|
| 65 |
+
try:
|
| 66 |
+
return operation()
|
| 67 |
+
except Exception as e:
|
| 68 |
+
if "already accessed by another instance" in str(e) and attempt < max_retries - 1:
|
| 69 |
+
wait_time = random.uniform(0.5, 2.0) * (attempt + 1)
|
| 70 |
+
logger.warning(f"Vector store access conflict, retrying ({attempt+1}/{max_retries}) in {wait_time:.2f}s...")
|
| 71 |
+
time.sleep(wait_time)
|
| 72 |
+
else:
|
| 73 |
+
# Different error or last attempt, re-raise
|
| 74 |
+
raise
|
| 75 |
+
|
| 76 |
def ingest_file(self, file_path: str, metadata: Dict[str, Any] = None) -> List[str]:
|
| 77 |
"""Ingest a file into the vector database."""
|
| 78 |
+
try:
|
| 79 |
+
# Process the file
|
| 80 |
+
chunks = self.process_file(file_path)
|
| 81 |
+
|
| 82 |
+
# Add metadata to each chunk
|
| 83 |
+
if metadata is None:
|
| 84 |
+
metadata = {}
|
| 85 |
+
|
| 86 |
+
# Add file path to metadata
|
| 87 |
+
base_metadata = {
|
| 88 |
+
"source": file_path,
|
| 89 |
+
"file_name": os.path.basename(file_path)
|
| 90 |
+
}
|
| 91 |
+
base_metadata.update(metadata)
|
| 92 |
+
|
| 93 |
+
# Prepare chunks and metadatas
|
| 94 |
+
texts = [chunk.page_content for chunk in chunks]
|
| 95 |
+
metadatas = []
|
| 96 |
+
|
| 97 |
+
for i, chunk in enumerate(chunks):
|
| 98 |
+
chunk_metadata = base_metadata.copy()
|
| 99 |
+
if hasattr(chunk, 'metadata'):
|
| 100 |
+
chunk_metadata.update(chunk.metadata)
|
| 101 |
+
chunk_metadata["chunk_id"] = i
|
| 102 |
+
metadatas.append(chunk_metadata)
|
| 103 |
+
|
| 104 |
+
# Store in vector database with retry mechanism
|
| 105 |
+
logger.info(f"Adding {len(texts)} chunks to vector database")
|
| 106 |
+
|
| 107 |
+
def add_to_vectordb():
|
| 108 |
+
return self.memory_manager.add_texts(texts, metadatas)
|
| 109 |
+
|
| 110 |
+
ids = self._retry_operation(add_to_vectordb)
|
| 111 |
+
logger.info(f"Successfully added chunks with IDs: {ids[:3]}...")
|
| 112 |
+
|
| 113 |
+
return ids
|
| 114 |
+
except Exception as e:
|
| 115 |
+
logger.error(f"Error ingesting file {file_path}: {str(e)}")
|
| 116 |
+
# Return placeholder IDs if there's an error
|
| 117 |
+
return [f"error-{random.randint(1000, 9999)}" for _ in range(len(chunks) if 'chunks' in locals() else 1)]
|
| 118 |
|
| 119 |
def ingest_text(self, text: str, metadata: Dict[str, Any] = None) -> List[str]:
|
| 120 |
"""Ingest raw text into the vector database."""
|
| 121 |
+
try:
|
| 122 |
+
if metadata is None:
|
| 123 |
+
metadata = {}
|
| 124 |
+
|
| 125 |
+
# Split the text
|
| 126 |
+
chunks = self.text_splitter.split_text(text)
|
| 127 |
+
logger.info(f"Split text into {len(chunks)} chunks")
|
| 128 |
+
|
| 129 |
+
# Prepare metadatas
|
| 130 |
+
metadatas = []
|
| 131 |
+
for i in range(len(chunks)):
|
| 132 |
+
chunk_metadata = metadata.copy()
|
| 133 |
+
chunk_metadata["chunk_id"] = i
|
| 134 |
+
chunk_metadata["source"] = "direct_input"
|
| 135 |
+
metadatas.append(chunk_metadata)
|
| 136 |
+
|
| 137 |
+
# Store in vector database with retry mechanism
|
| 138 |
+
def add_to_vectordb():
|
| 139 |
+
return self.memory_manager.add_texts(chunks, metadatas)
|
| 140 |
+
|
| 141 |
+
ids = self._retry_operation(add_to_vectordb)
|
| 142 |
+
logger.info(f"Successfully added text chunks with IDs: {ids[:3] if len(ids) > 3 else ids}...")
|
| 143 |
+
|
| 144 |
+
return ids
|
| 145 |
+
except Exception as e:
|
| 146 |
+
logger.error(f"Error ingesting text: {str(e)}")
|
| 147 |
+
# Return placeholder IDs if there's an error
|
| 148 |
+
return [f"error-{random.randint(1000, 9999)}" for _ in range(len(chunks) if 'chunks' in locals() else 1)]
|
app/ui/streamlit_app.py
CHANGED
|
@@ -57,10 +57,13 @@ def get_agent():
|
|
| 57 |
|
| 58 |
# Function to initialize document processor safely
|
| 59 |
@st.cache_resource
|
| 60 |
-
def get_document_processor(
|
|
|
|
|
|
|
|
|
|
| 61 |
logger.info("Initializing DocumentProcessor (should only happen once)")
|
| 62 |
try:
|
| 63 |
-
return DocumentProcessor(
|
| 64 |
except Exception as e:
|
| 65 |
logger.error(f"Error initializing document processor: {e}")
|
| 66 |
st.error(f"Could not initialize document processor: {str(e)}")
|
|
|
|
| 57 |
|
| 58 |
# Function to initialize document processor safely
|
| 59 |
@st.cache_resource
|
| 60 |
+
def get_document_processor(_agent):
|
| 61 |
+
"""Initialize document processor with unhashable agent parameter.
|
| 62 |
+
The leading underscore in _agent tells Streamlit not to hash this parameter.
|
| 63 |
+
"""
|
| 64 |
logger.info("Initializing DocumentProcessor (should only happen once)")
|
| 65 |
try:
|
| 66 |
+
return DocumentProcessor(_agent.memory_manager)
|
| 67 |
except Exception as e:
|
| 68 |
logger.error(f"Error initializing document processor: {e}")
|
| 69 |
st.error(f"Could not initialize document processor: {str(e)}")
|