Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI, Response, status | |
| from pydantic import BaseModel | |
| from hypothesis import BaseModelHypothesis | |
| from secondary_model_dependencies import SecondaryModelDependencies | |
| from secondary_model import SecondaryModel | |
| from main_model import PredictMainModel | |
| import numpy as np | |
| from typing import List | |
| app = FastAPI() | |
| class PredictRequest(BaseModel): | |
| answer: str | |
| backspace_count: int | |
| letter_click_counts: dict[str, int] | |
| gpt4o_answer: str | |
| class RequestModel(BaseModel): | |
| instances: List[PredictRequest] | |
| async def is_alive(): | |
| return Response(status_code=status.HTTP_200_OK) | |
| async def predict(request: RequestModel): | |
| responses = [process_instance(data) for data in request.instances] | |
| return {"predictions": responses} | |
| def process_instance(data: PredictRequest): | |
| answer = data.answer | |
| backspace_count = data.backspace_count | |
| letter_click_counts = data.letter_click_counts | |
| gpt4o_answer = data.gpt4o_answer | |
| # Data preparation for 1st model | |
| hypothesis = BaseModelHypothesis() | |
| additional_features = hypothesis.calculate_features_dataframe(answer) | |
| # 1st model prediction | |
| main_model = PredictMainModel() | |
| main_model_probability = main_model.predict( | |
| answer, additional_features) | |
| # Data preparation for 2nd model | |
| secondary_model_dependencies = SecondaryModelDependencies() | |
| secondary_model_features = secondary_model_dependencies.calculate_features( | |
| answer, main_model_probability, backspace_count, | |
| letter_click_counts, gpt4o_answer) | |
| # 2nd model prediction | |
| secondary_model = SecondaryModel() | |
| secondary_model_probability = secondary_model.predict( | |
| secondary_model_features) | |
| second_model_threshold = 0.54 | |
| return { | |
| "predicted_class": "AI" if secondary_model_probability > second_model_threshold else "HUMAN", | |
| "main_model_probability": str(main_model_probability), | |
| "secondary_model_probability": str(secondary_model_probability), | |
| "confidence": get_confidence(main_model_probability, secondary_model_probability, second_model_threshold) | |
| } | |
| def get_confidence(main_model_output: float, secondary_model_output: int, threshold: float): | |
| if (main_model_output >= 0.8 and secondary_model_output >= threshold) or (main_model_output <= 0.2 and secondary_model_output <= 1 - threshold): | |
| return 'High Confidence' | |
| elif (0.5 < main_model_output < 0.8 and secondary_model_output >= threshold) or (0.2 < main_model_output <= 0.5 and secondary_model_output < threshold): | |
| return 'Partially Confident' | |
| else: | |
| return 'Low Confidence' | |