Spaces:
Sleeping
Sleeping
| from sentence_transformers import SentenceTransformer, util | |
| from collections import Counter | |
| class SecondaryModelDependencies: | |
| def __init__(self): | |
| self.text_similarity_model = SentenceTransformer( | |
| 'sentence-transformers/all-mpnet-base-v2') | |
| def calculate_features(self, answer: str, probability: float, backspace_count: int, | |
| letter_click_counts: dict[str, int], gpt4o_answer: str): | |
| backspace_count_normalized = backspace_count / len(answer) | |
| letter_discrepancy = self.calculate_letter_discrepancy( | |
| answer, letter_click_counts) | |
| cosine_sim_gpt4o = self.calculate_similarity_gpt4o( | |
| answer, gpt4o_answer) | |
| return [ | |
| probability, backspace_count_normalized, letter_discrepancy, cosine_sim_gpt4o | |
| ] | |
| def calculate_letter_discrepancy(self, text: str, letter_click_counts: dict[str, int]): | |
| # Calculate letter frequencies in the text | |
| text_letter_counts = Counter(text.lower()) | |
| # Calculate the ratio of click counts to text counts for each letter, adjusting for letters not in text | |
| ratios = [letter_click_counts.get(letter, 0) / (text_letter_counts.get(letter, 0) + 1) | |
| for letter in "abcdefghijklmnopqrstuvwxyz"] | |
| # Average the ratios and normalize by the length of the text | |
| average_ratio = sum(ratios) / len(ratios) | |
| discrepancy_ratio_normalized = average_ratio / \ | |
| (len(text) if len(text) > 0 else 1) | |
| return discrepancy_ratio_normalized | |
| def calculate_similarity_gpt4o(self, answer: str, gpt4o_answer: str) -> float: | |
| embedding1 = self.text_similarity_model.encode( | |
| [answer], convert_to_tensor=True) | |
| embedding2 = self.text_similarity_model.encode( | |
| [gpt4o_answer], convert_to_tensor=True) | |
| cosine_scores = util.cos_sim(embedding1, embedding2) | |
| return cosine_scores.item() | |