Spaces:
Sleeping
Sleeping
Commit
·
3953432
1
Parent(s):
9c34cdf
fix: try to fix wordnet not unzipping
Browse files
core-model-prediction/hypothesis.py
CHANGED
|
@@ -8,14 +8,12 @@ from collections import defaultdict
|
|
| 8 |
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
| 9 |
from gemma2b_dependencies import Gemma2BDependencies
|
| 10 |
from string import punctuation
|
|
|
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
class BaseModelHypothesis:
|
| 14 |
def __init__(self):
|
| 15 |
-
nltk.download('punkt')
|
| 16 |
-
nltk.download('wordnet')
|
| 17 |
-
nltk.download('averaged_perceptron_tagger')
|
| 18 |
-
|
| 19 |
self.analyzer = SentimentIntensityAnalyzer()
|
| 20 |
self.lexicon_df = pd.read_csv(
|
| 21 |
"https://storage.googleapis.com/interview-ai-detector/higher-accuracy-final-model/NRC-Emotion-Lexicon.csv")
|
|
@@ -50,6 +48,18 @@ class BaseModelHypothesis:
|
|
| 50 |
self.scaler_not_normalized = joblib.load(
|
| 51 |
"scalers/scaler-not-normalized.joblib")
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
def process_emotion_lexicon(self):
|
| 54 |
emotion_lexicon = {}
|
| 55 |
for _, row in self.lexicon_df.iterrows():
|
|
|
|
| 8 |
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
| 9 |
from gemma2b_dependencies import Gemma2BDependencies
|
| 10 |
from string import punctuation
|
| 11 |
+
import os
|
| 12 |
+
import zipfile
|
| 13 |
|
| 14 |
|
| 15 |
class BaseModelHypothesis:
|
| 16 |
def __init__(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
self.analyzer = SentimentIntensityAnalyzer()
|
| 18 |
self.lexicon_df = pd.read_csv(
|
| 19 |
"https://storage.googleapis.com/interview-ai-detector/higher-accuracy-final-model/NRC-Emotion-Lexicon.csv")
|
|
|
|
| 48 |
self.scaler_not_normalized = joblib.load(
|
| 49 |
"scalers/scaler-not-normalized.joblib")
|
| 50 |
|
| 51 |
+
def download_and_extract_nltk_data(self):
|
| 52 |
+
nltk.download('punkt')
|
| 53 |
+
nltk.download('wordnet')
|
| 54 |
+
nltk.download('averaged_perceptron_tagger')
|
| 55 |
+
|
| 56 |
+
wordnet_dir = nltk.data.find("corpora/wordnet").path
|
| 57 |
+
if not os.path.exists(wordnet_dir):
|
| 58 |
+
zip_path = os.path.join(
|
| 59 |
+
os.path.dirname(wordnet_dir), "wordnet.zip")
|
| 60 |
+
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
| 61 |
+
zip_ref.extractall(os.path.dirname(wordnet_dir))
|
| 62 |
+
|
| 63 |
def process_emotion_lexicon(self):
|
| 64 |
emotion_lexicon = {}
|
| 65 |
for _, row in self.lexicon_df.iterrows():
|