Spaces:
Runtime error
Runtime error
Upload 10 files
Browse files- .dockerignore +69 -0
- .gitignore +134 -0
- Dockerfile +47 -0
- README.md +295 -10
- app.py +285 -0
- hf_client.py +197 -0
- main.py +221 -0
- requirements.txt +10 -0
- start_server.py +47 -0
- test_client.py +170 -0
.dockerignore
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Git
|
| 2 |
+
.git
|
| 3 |
+
.gitignore
|
| 4 |
+
|
| 5 |
+
# Python
|
| 6 |
+
__pycache__/
|
| 7 |
+
*.py[cod]
|
| 8 |
+
*$py.class
|
| 9 |
+
*.so
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
*.egg-info/
|
| 24 |
+
.installed.cfg
|
| 25 |
+
*.egg
|
| 26 |
+
MANIFEST
|
| 27 |
+
|
| 28 |
+
# Virtual environments
|
| 29 |
+
.env
|
| 30 |
+
.venv
|
| 31 |
+
env/
|
| 32 |
+
venv/
|
| 33 |
+
ENV/
|
| 34 |
+
env.bak/
|
| 35 |
+
venv.bak/
|
| 36 |
+
|
| 37 |
+
# IDE
|
| 38 |
+
.vscode/
|
| 39 |
+
.idea/
|
| 40 |
+
*.swp
|
| 41 |
+
*.swo
|
| 42 |
+
*~
|
| 43 |
+
|
| 44 |
+
# OS
|
| 45 |
+
.DS_Store
|
| 46 |
+
.DS_Store?
|
| 47 |
+
._*
|
| 48 |
+
.Spotlight-V100
|
| 49 |
+
.Trashes
|
| 50 |
+
ehthumbs.db
|
| 51 |
+
Thumbs.db
|
| 52 |
+
|
| 53 |
+
# Test files
|
| 54 |
+
test_client.py
|
| 55 |
+
hf_client.py
|
| 56 |
+
start_server.py
|
| 57 |
+
test_image.jpg
|
| 58 |
+
sample_images/
|
| 59 |
+
|
| 60 |
+
# Logs
|
| 61 |
+
*.log
|
| 62 |
+
logs/
|
| 63 |
+
|
| 64 |
+
# Temporary files
|
| 65 |
+
tmp/
|
| 66 |
+
temp/
|
| 67 |
+
|
| 68 |
+
# Documentation
|
| 69 |
+
README.md
|
.gitignore
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
build/
|
| 8 |
+
develop-eggs/
|
| 9 |
+
dist/
|
| 10 |
+
downloads/
|
| 11 |
+
eggs/
|
| 12 |
+
.eggs/
|
| 13 |
+
lib/
|
| 14 |
+
lib64/
|
| 15 |
+
parts/
|
| 16 |
+
sdist/
|
| 17 |
+
var/
|
| 18 |
+
wheels/
|
| 19 |
+
*.egg-info/
|
| 20 |
+
.installed.cfg
|
| 21 |
+
*.egg
|
| 22 |
+
MANIFEST
|
| 23 |
+
|
| 24 |
+
# PyInstaller
|
| 25 |
+
*.manifest
|
| 26 |
+
*.spec
|
| 27 |
+
|
| 28 |
+
# Installer logs
|
| 29 |
+
pip-log.txt
|
| 30 |
+
pip-delete-this-directory.txt
|
| 31 |
+
|
| 32 |
+
# Unit test / coverage reports
|
| 33 |
+
htmlcov/
|
| 34 |
+
.tox/
|
| 35 |
+
.coverage
|
| 36 |
+
.coverage.*
|
| 37 |
+
.cache
|
| 38 |
+
nosetests.xml
|
| 39 |
+
coverage.xml
|
| 40 |
+
*.cover
|
| 41 |
+
.hypothesis/
|
| 42 |
+
.pytest_cache/
|
| 43 |
+
|
| 44 |
+
# Translations
|
| 45 |
+
*.mo
|
| 46 |
+
*.pot
|
| 47 |
+
|
| 48 |
+
# Django stuff:
|
| 49 |
+
*.log
|
| 50 |
+
local_settings.py
|
| 51 |
+
db.sqlite3
|
| 52 |
+
|
| 53 |
+
# Flask stuff:
|
| 54 |
+
instance/
|
| 55 |
+
.webassets-cache
|
| 56 |
+
|
| 57 |
+
# Scrapy stuff:
|
| 58 |
+
.scrapy
|
| 59 |
+
|
| 60 |
+
# Sphinx documentation
|
| 61 |
+
docs/_build/
|
| 62 |
+
|
| 63 |
+
# PyBuilder
|
| 64 |
+
target/
|
| 65 |
+
|
| 66 |
+
# Jupyter Notebook
|
| 67 |
+
.ipynb_checkpoints
|
| 68 |
+
|
| 69 |
+
# pyenv
|
| 70 |
+
.python-version
|
| 71 |
+
|
| 72 |
+
# celery beat schedule file
|
| 73 |
+
celerybeat-schedule
|
| 74 |
+
|
| 75 |
+
# SageMath parsed files
|
| 76 |
+
*.sage.py
|
| 77 |
+
|
| 78 |
+
# Environments
|
| 79 |
+
.env
|
| 80 |
+
.venv
|
| 81 |
+
env/
|
| 82 |
+
venv/
|
| 83 |
+
ENV/
|
| 84 |
+
env.bak/
|
| 85 |
+
venv.bak/
|
| 86 |
+
|
| 87 |
+
# Spyder project settings
|
| 88 |
+
.spyderproject
|
| 89 |
+
.spyproject
|
| 90 |
+
|
| 91 |
+
# Rope project settings
|
| 92 |
+
.ropeproject
|
| 93 |
+
|
| 94 |
+
# mkdocs documentation
|
| 95 |
+
/site
|
| 96 |
+
|
| 97 |
+
# mypy
|
| 98 |
+
.mypy_cache/
|
| 99 |
+
.dmypy.json
|
| 100 |
+
dmypy.json
|
| 101 |
+
|
| 102 |
+
# IDE
|
| 103 |
+
.vscode/
|
| 104 |
+
.idea/
|
| 105 |
+
*.swp
|
| 106 |
+
*.swo
|
| 107 |
+
*~
|
| 108 |
+
|
| 109 |
+
# OS
|
| 110 |
+
.DS_Store
|
| 111 |
+
.DS_Store?
|
| 112 |
+
._*
|
| 113 |
+
.Spotlight-V100
|
| 114 |
+
.Trashes
|
| 115 |
+
ehthumbs.db
|
| 116 |
+
Thumbs.db
|
| 117 |
+
|
| 118 |
+
# Model files (if you have local models)
|
| 119 |
+
*.safetensors
|
| 120 |
+
*.bin
|
| 121 |
+
*.pt
|
| 122 |
+
*.pth
|
| 123 |
+
|
| 124 |
+
# Test images
|
| 125 |
+
test_image.jpg
|
| 126 |
+
sample_images/
|
| 127 |
+
|
| 128 |
+
# Logs
|
| 129 |
+
*.log
|
| 130 |
+
logs/
|
| 131 |
+
|
| 132 |
+
# Temporary files
|
| 133 |
+
tmp/
|
| 134 |
+
temp/
|
Dockerfile
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use Python 3.9 slim image as base
|
| 2 |
+
FROM python:3.9-slim
|
| 3 |
+
|
| 4 |
+
# Set working directory
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Install system dependencies
|
| 8 |
+
RUN apt-get update && apt-get install -y \
|
| 9 |
+
gcc \
|
| 10 |
+
g++ \
|
| 11 |
+
libgl1-mesa-glx \
|
| 12 |
+
libglib2.0-0 \
|
| 13 |
+
libsm6 \
|
| 14 |
+
libxext6 \
|
| 15 |
+
libxrender-dev \
|
| 16 |
+
libgomp1 \
|
| 17 |
+
curl \
|
| 18 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 19 |
+
|
| 20 |
+
# Copy requirements first for better caching
|
| 21 |
+
COPY requirements.txt .
|
| 22 |
+
|
| 23 |
+
# Install Python dependencies
|
| 24 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 25 |
+
|
| 26 |
+
# Create models directory
|
| 27 |
+
RUN mkdir -p /app/models
|
| 28 |
+
|
| 29 |
+
# Copy model files
|
| 30 |
+
COPY *.safetensors /app/models/
|
| 31 |
+
|
| 32 |
+
# Copy application code
|
| 33 |
+
COPY app.py .
|
| 34 |
+
|
| 35 |
+
# Create a non-root user for security
|
| 36 |
+
RUN useradd -m -u 1000 appuser && chown -R appuser:appuser /app
|
| 37 |
+
USER appuser
|
| 38 |
+
|
| 39 |
+
# Expose port (Hugging Face Spaces uses port 7860)
|
| 40 |
+
EXPOSE 7860
|
| 41 |
+
|
| 42 |
+
# Health check
|
| 43 |
+
HEALTHCHECK --interval=30s --timeout=30s --start-period=5s --retries=3 \
|
| 44 |
+
CMD curl -f http://localhost:7860/health || exit 1
|
| 45 |
+
|
| 46 |
+
# Run the application
|
| 47 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
|
@@ -1,10 +1,295 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ChatGPT Oasis Model Inference API - Hugging Face Spaces (Docker)
|
| 2 |
+
|
| 3 |
+
A FastAPI-based inference server for vision models (Oasis 500M and ViT-L-20) deployed on Hugging Face Spaces using Docker SDK with local model files.
|
| 4 |
+
|
| 5 |
+
## 🚀 Live Demo
|
| 6 |
+
|
| 7 |
+
This API is deployed on Hugging Face Spaces and can be accessed at:
|
| 8 |
+
```
|
| 9 |
+
https://your-username-chatgpt-oasis.hf.space
|
| 10 |
+
```
|
| 11 |
+
|
| 12 |
+
## 📋 API Endpoints
|
| 13 |
+
|
| 14 |
+
### Base URL
|
| 15 |
+
```
|
| 16 |
+
https://your-username-chatgpt-oasis.hf.space
|
| 17 |
+
```
|
| 18 |
+
|
| 19 |
+
### Available Endpoints
|
| 20 |
+
|
| 21 |
+
#### 1. API Information
|
| 22 |
+
- **GET** `/`
|
| 23 |
+
- Returns API information and usage instructions
|
| 24 |
+
|
| 25 |
+
#### 2. Health Check
|
| 26 |
+
- **GET** `/health`
|
| 27 |
+
- Returns server health status, model loading status, and model file presence
|
| 28 |
+
|
| 29 |
+
#### 3. List Models
|
| 30 |
+
- **GET** `/models`
|
| 31 |
+
- Returns information about available models and their file status
|
| 32 |
+
|
| 33 |
+
#### 4. Inference (Base64)
|
| 34 |
+
- **POST** `/inference`
|
| 35 |
+
- Accepts base64 encoded images
|
| 36 |
+
- Request body:
|
| 37 |
+
```json
|
| 38 |
+
{
|
| 39 |
+
"image": "base64_encoded_image_string",
|
| 40 |
+
"model_name": "oasis500m" // or "vit-l-20"
|
| 41 |
+
}
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
#### 5. Inference (File Upload)
|
| 45 |
+
- **POST** `/upload_inference`
|
| 46 |
+
- Accepts image file uploads
|
| 47 |
+
- Form data:
|
| 48 |
+
- `file`: Image file
|
| 49 |
+
- `model_name`: Model to use (optional, defaults to "oasis500m")
|
| 50 |
+
|
| 51 |
+
#### 6. Simple Prediction (Gradio Compatible)
|
| 52 |
+
- **POST** `/predict`
|
| 53 |
+
- Simple file upload endpoint for easy integration
|
| 54 |
+
|
| 55 |
+
## 🔧 Usage Examples
|
| 56 |
+
|
| 57 |
+
### Using Python Requests
|
| 58 |
+
|
| 59 |
+
```python
|
| 60 |
+
import requests
|
| 61 |
+
import base64
|
| 62 |
+
from PIL import Image
|
| 63 |
+
import io
|
| 64 |
+
|
| 65 |
+
# Your Hugging Face Spaces URL
|
| 66 |
+
SPACE_URL = "https://your-username-chatgpt-oasis.hf.space"
|
| 67 |
+
|
| 68 |
+
# Method 1: File Upload
|
| 69 |
+
def predict_with_file_upload(image_path, model_name="oasis500m"):
|
| 70 |
+
with open(image_path, 'rb') as f:
|
| 71 |
+
files = {'file': f}
|
| 72 |
+
data = {'model_name': model_name}
|
| 73 |
+
|
| 74 |
+
response = requests.post(
|
| 75 |
+
f"{SPACE_URL}/upload_inference",
|
| 76 |
+
files=files,
|
| 77 |
+
data=data,
|
| 78 |
+
timeout=120
|
| 79 |
+
)
|
| 80 |
+
return response.json()
|
| 81 |
+
|
| 82 |
+
# Method 2: Base64 Encoding
|
| 83 |
+
def predict_with_base64(image_path, model_name="oasis500m"):
|
| 84 |
+
# Load and encode image
|
| 85 |
+
image = Image.open(image_path)
|
| 86 |
+
buffer = io.BytesIO()
|
| 87 |
+
image.save(buffer, format="JPEG")
|
| 88 |
+
image_base64 = base64.b64encode(buffer.getvalue()).decode()
|
| 89 |
+
|
| 90 |
+
# Make request
|
| 91 |
+
response = requests.post(
|
| 92 |
+
f"{SPACE_URL}/inference",
|
| 93 |
+
json={
|
| 94 |
+
"image": image_base64,
|
| 95 |
+
"model_name": model_name
|
| 96 |
+
},
|
| 97 |
+
timeout=120
|
| 98 |
+
)
|
| 99 |
+
return response.json()
|
| 100 |
+
|
| 101 |
+
# Example usage
|
| 102 |
+
result = predict_with_file_upload("your_image.jpg", "oasis500m")
|
| 103 |
+
print(result)
|
| 104 |
+
```
|
| 105 |
+
|
| 106 |
+
### Using cURL
|
| 107 |
+
|
| 108 |
+
```bash
|
| 109 |
+
# File upload inference
|
| 110 |
+
curl -X POST "https://your-username-chatgpt-oasis.hf.space/upload_inference" \
|
| 111 |
+
-H "accept: application/json" \
|
| 112 |
+
-F "file=@your_image.jpg" \
|
| 113 |
+
-F "model_name=oasis500m"
|
| 114 |
+
|
| 115 |
+
# Health check
|
| 116 |
+
curl "https://your-username-chatgpt-oasis.hf.space/health"
|
| 117 |
+
|
| 118 |
+
# API documentation
|
| 119 |
+
curl "https://your-username-chatgpt-oasis.hf.space/docs"
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
### Using JavaScript/Fetch
|
| 123 |
+
|
| 124 |
+
```javascript
|
| 125 |
+
// File upload inference
|
| 126 |
+
async function predictImage(file, modelName = 'oasis500m') {
|
| 127 |
+
const formData = new FormData();
|
| 128 |
+
formData.append('file', file);
|
| 129 |
+
formData.append('model_name', modelName);
|
| 130 |
+
|
| 131 |
+
const response = await fetch('https://your-username-chatgpt-oasis.hf.space/upload_inference', {
|
| 132 |
+
method: 'POST',
|
| 133 |
+
body: formData
|
| 134 |
+
});
|
| 135 |
+
|
| 136 |
+
return await response.json();
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
+
// Base64 inference
|
| 140 |
+
async function predictImageBase64(imageBase64, modelName = 'oasis500m') {
|
| 141 |
+
const response = await fetch('https://your-username-chatgpt-oasis.hf.space/inference', {
|
| 142 |
+
method: 'POST',
|
| 143 |
+
headers: {
|
| 144 |
+
'Content-Type': 'application/json',
|
| 145 |
+
},
|
| 146 |
+
body: JSON.stringify({
|
| 147 |
+
image: imageBase64,
|
| 148 |
+
model_name: modelName
|
| 149 |
+
})
|
| 150 |
+
});
|
| 151 |
+
|
| 152 |
+
return await response.json();
|
| 153 |
+
}
|
| 154 |
+
```
|
| 155 |
+
|
| 156 |
+
## 📊 Response Format
|
| 157 |
+
|
| 158 |
+
All inference endpoints return the same response format:
|
| 159 |
+
|
| 160 |
+
```json
|
| 161 |
+
{
|
| 162 |
+
"predictions": [
|
| 163 |
+
{
|
| 164 |
+
"label": "predicted_class_name",
|
| 165 |
+
"confidence": 0.95
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"label": "second_predicted_class",
|
| 169 |
+
"confidence": 0.03
|
| 170 |
+
}
|
| 171 |
+
],
|
| 172 |
+
"model_used": "oasis500m",
|
| 173 |
+
"confidence_scores": [0.95, 0.03, 0.01, 0.005, 0.005]
|
| 174 |
+
}
|
| 175 |
+
```
|
| 176 |
+
|
| 177 |
+
## 🤖 Available Models
|
| 178 |
+
|
| 179 |
+
### Oasis 500M
|
| 180 |
+
- **Type**: Vision Transformer
|
| 181 |
+
- **Size**: ~500M parameters
|
| 182 |
+
- **File**: `oasis500m.safetensors`
|
| 183 |
+
- **Use Case**: General image classification
|
| 184 |
+
- **Performance**: High accuracy on ImageNet
|
| 185 |
+
|
| 186 |
+
### ViT-L-20
|
| 187 |
+
- **Type**: Vision Transformer Large
|
| 188 |
+
- **Size**: ~300M parameters
|
| 189 |
+
- **File**: `vit-l-20.safetensors`
|
| 190 |
+
- **Use Case**: High-performance image classification
|
| 191 |
+
- **Performance**: State-of-the-art on many benchmarks
|
| 192 |
+
|
| 193 |
+
## 🔍 API Documentation
|
| 194 |
+
|
| 195 |
+
Once deployed, you can access:
|
| 196 |
+
- **Interactive API Docs**: `https://your-username-chatgpt-oasis.hf.space/docs`
|
| 197 |
+
- **Alternative API Docs**: `https://your-username-chatgpt-oasis.hf.space/redoc`
|
| 198 |
+
|
| 199 |
+
## 🚀 Deployment on Hugging Face Spaces (Docker SDK)
|
| 200 |
+
|
| 201 |
+
### Prerequisites
|
| 202 |
+
1. Hugging Face account
|
| 203 |
+
2. Local model files (`.safetensors`)
|
| 204 |
+
3. Git repository with your code
|
| 205 |
+
|
| 206 |
+
### Steps to Deploy
|
| 207 |
+
|
| 208 |
+
1. **Create a new Space on Hugging Face**
|
| 209 |
+
- Go to [Hugging Face Spaces](https://huggingface.co/spaces)
|
| 210 |
+
- Click "Create new Space"
|
| 211 |
+
- Choose **"Docker"** as the SDK
|
| 212 |
+
- Set visibility (public/private)
|
| 213 |
+
|
| 214 |
+
2. **Prepare your files**
|
| 215 |
+
- `Dockerfile` - Container configuration
|
| 216 |
+
- `app.py` - Main FastAPI application
|
| 217 |
+
- `requirements.txt` - Python dependencies
|
| 218 |
+
- `README.md` - This documentation
|
| 219 |
+
- `oasis500m.safetensors` - Oasis model weights
|
| 220 |
+
- `vit-l-20.safetensors` - ViT model weights
|
| 221 |
+
|
| 222 |
+
3. **Upload files to your Space**
|
| 223 |
+
- Upload all files to the Space repository
|
| 224 |
+
- The Dockerfile will copy the model files into the container
|
| 225 |
+
|
| 226 |
+
4. **Configure the Space**
|
| 227 |
+
- Set appropriate hardware requirements (CPU/GPU)
|
| 228 |
+
- Ensure sufficient memory for model loading
|
| 229 |
+
|
| 230 |
+
5. **Deploy**
|
| 231 |
+
- Push your code to the Space repository
|
| 232 |
+
- Hugging Face will automatically build the Docker image and deploy
|
| 233 |
+
|
| 234 |
+
### Space Configuration
|
| 235 |
+
|
| 236 |
+
Your Space will need:
|
| 237 |
+
- **Hardware**: CPU (or GPU for faster inference)
|
| 238 |
+
- **Memory**: At least 8GB RAM (for both models)
|
| 239 |
+
- **Storage**: Sufficient space for model files (~3GB)
|
| 240 |
+
|
| 241 |
+
## 📁 File Structure
|
| 242 |
+
|
| 243 |
+
```
|
| 244 |
+
your-space/
|
| 245 |
+
├── Dockerfile # Container configuration
|
| 246 |
+
├── app.py # FastAPI application
|
| 247 |
+
├── requirements.txt # Python dependencies
|
| 248 |
+
├── README.md # Documentation
|
| 249 |
+
├── .dockerignore # Docker ignore file
|
| 250 |
+
├── oasis500m.safetensors # Oasis model weights
|
| 251 |
+
└── vit-l-20.safetensors # ViT model weights
|
| 252 |
+
```
|
| 253 |
+
|
| 254 |
+
## ⚡ Performance Tips
|
| 255 |
+
|
| 256 |
+
- **Model Loading**: Models are loaded once when the container starts
|
| 257 |
+
- **Local Files**: Using local `.safetensors` files avoids download time
|
| 258 |
+
- **Caching**: Consider implementing response caching for repeated requests
|
| 259 |
+
- **Batch Processing**: For multiple images, send them sequentially
|
| 260 |
+
- **Image Size**: Optimize image size before sending (models expect specific dimensions)
|
| 261 |
+
|
| 262 |
+
## 🔧 Troubleshooting
|
| 263 |
+
|
| 264 |
+
### Common Issues
|
| 265 |
+
|
| 266 |
+
1. **Model Loading Time**
|
| 267 |
+
- First request may take longer as models load from local files
|
| 268 |
+
- Check `/health` endpoint for model status
|
| 269 |
+
|
| 270 |
+
2. **Memory Issues**
|
| 271 |
+
- Use smaller images
|
| 272 |
+
- Process one image at a time
|
| 273 |
+
- Consider using only one model at a time
|
| 274 |
+
|
| 275 |
+
3. **Model File Issues**
|
| 276 |
+
- Ensure `.safetensors` files are uploaded to the Space
|
| 277 |
+
- Check `/health` endpoint for file presence status
|
| 278 |
+
|
| 279 |
+
4. **Timeout Errors**
|
| 280 |
+
- Increase timeout settings in your client
|
| 281 |
+
- Check Space logs for errors
|
| 282 |
+
|
| 283 |
+
### Getting Help
|
| 284 |
+
|
| 285 |
+
- Check the Space logs in Hugging Face dashboard
|
| 286 |
+
- Use the `/health` endpoint to verify model and file status
|
| 287 |
+
- Test with the `/docs` interactive interface
|
| 288 |
+
|
| 289 |
+
## 📝 License
|
| 290 |
+
|
| 291 |
+
This project is for inference purposes. Please respect the licenses of the underlying models (Oasis and ViT).
|
| 292 |
+
|
| 293 |
+
## 🤝 Contributing
|
| 294 |
+
|
| 295 |
+
Feel free to submit issues and enhancement requests!
|
app.py
ADDED
|
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
| 2 |
+
from fastapi.responses import JSONResponse
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import io
|
| 9 |
+
import numpy as np
|
| 10 |
+
from typing import List, Dict, Any
|
| 11 |
+
import logging
|
| 12 |
+
import os
|
| 13 |
+
|
| 14 |
+
# Configure logging
|
| 15 |
+
logging.basicConfig(level=logging.INFO)
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
app = FastAPI(
|
| 19 |
+
title="ChatGPT Oasis Model Inference API",
|
| 20 |
+
description="FastAPI inference server for Oasis and ViT models deployed on Hugging Face Spaces with Docker",
|
| 21 |
+
version="1.0.0"
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
# Global variables to store loaded models
|
| 25 |
+
oasis_model = None
|
| 26 |
+
oasis_processor = None
|
| 27 |
+
vit_model = None
|
| 28 |
+
vit_processor = None
|
| 29 |
+
|
| 30 |
+
class InferenceRequest(BaseModel):
|
| 31 |
+
image: str # Base64 encoded image
|
| 32 |
+
model_name: str = "oasis500m" # Default to oasis model
|
| 33 |
+
|
| 34 |
+
class InferenceResponse(BaseModel):
|
| 35 |
+
predictions: List[Dict[str, Any]]
|
| 36 |
+
model_used: str
|
| 37 |
+
confidence_scores: List[float]
|
| 38 |
+
|
| 39 |
+
def load_models():
|
| 40 |
+
"""Load both models from local files"""
|
| 41 |
+
global oasis_model, oasis_processor, vit_model, vit_processor
|
| 42 |
+
|
| 43 |
+
try:
|
| 44 |
+
logger.info("Loading Oasis 500M model from local files...")
|
| 45 |
+
# Load Oasis model from local files
|
| 46 |
+
oasis_processor = AutoImageProcessor.from_pretrained("microsoft/oasis-500m")
|
| 47 |
+
oasis_model = AutoModelForImageClassification.from_pretrained(
|
| 48 |
+
"microsoft/oasis-500m",
|
| 49 |
+
local_files_only=False # Will download config but use local weights
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
# Load local weights if available
|
| 53 |
+
oasis_model_path = "/app/models/oasis500m.safetensors"
|
| 54 |
+
if os.path.exists(oasis_model_path):
|
| 55 |
+
logger.info("Loading Oasis weights from local file...")
|
| 56 |
+
from safetensors.torch import load_file
|
| 57 |
+
state_dict = load_file(oasis_model_path)
|
| 58 |
+
oasis_model.load_state_dict(state_dict, strict=False)
|
| 59 |
+
|
| 60 |
+
oasis_model.eval()
|
| 61 |
+
|
| 62 |
+
logger.info("Loading ViT-L-20 model from local files...")
|
| 63 |
+
# Load ViT model from local files
|
| 64 |
+
vit_processor = AutoImageProcessor.from_pretrained("google/vit-large-patch16-224")
|
| 65 |
+
vit_model = AutoModelForImageClassification.from_pretrained(
|
| 66 |
+
"google/vit-large-patch16-224",
|
| 67 |
+
local_files_only=False # Will download config but use local weights
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# Load local weights if available
|
| 71 |
+
vit_model_path = "/app/models/vit-l-20.safetensors"
|
| 72 |
+
if os.path.exists(vit_model_path):
|
| 73 |
+
logger.info("Loading ViT weights from local file...")
|
| 74 |
+
from safetensors.torch import load_file
|
| 75 |
+
state_dict = load_file(vit_model_path)
|
| 76 |
+
vit_model.load_state_dict(state_dict, strict=False)
|
| 77 |
+
|
| 78 |
+
vit_model.eval()
|
| 79 |
+
|
| 80 |
+
logger.info("All models loaded successfully!")
|
| 81 |
+
|
| 82 |
+
except Exception as e:
|
| 83 |
+
logger.error(f"Error loading models: {e}")
|
| 84 |
+
raise e
|
| 85 |
+
|
| 86 |
+
@app.on_event("startup")
|
| 87 |
+
async def startup_event():
|
| 88 |
+
"""Load models when the application starts"""
|
| 89 |
+
load_models()
|
| 90 |
+
|
| 91 |
+
@app.get("/")
|
| 92 |
+
async def root():
|
| 93 |
+
"""Root endpoint with API information"""
|
| 94 |
+
return {
|
| 95 |
+
"message": "ChatGPT Oasis Model Inference API",
|
| 96 |
+
"version": "1.0.0",
|
| 97 |
+
"deployed_on": "Hugging Face Spaces (Docker)",
|
| 98 |
+
"available_models": ["oasis500m", "vit-l-20"],
|
| 99 |
+
"endpoints": {
|
| 100 |
+
"health": "/health",
|
| 101 |
+
"inference": "/inference",
|
| 102 |
+
"upload_inference": "/upload_inference",
|
| 103 |
+
"predict": "/predict"
|
| 104 |
+
},
|
| 105 |
+
"usage": {
|
| 106 |
+
"base64_inference": "POST /inference with JSON body containing 'image' (base64) and 'model_name'",
|
| 107 |
+
"file_upload": "POST /upload_inference with multipart form containing 'file' and optional 'model_name'",
|
| 108 |
+
"simple_predict": "POST /predict with file upload for quick inference"
|
| 109 |
+
}
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
@app.get("/health")
|
| 113 |
+
async def health_check():
|
| 114 |
+
"""Health check endpoint"""
|
| 115 |
+
models_status = {
|
| 116 |
+
"oasis500m": oasis_model is not None,
|
| 117 |
+
"vit-l-20": vit_model is not None
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
# Check if model files exist
|
| 121 |
+
model_files = {
|
| 122 |
+
"oasis500m": os.path.exists("/app/models/oasis500m.safetensors"),
|
| 123 |
+
"vit-l-20": os.path.exists("/app/models/vit-l-20.safetensors")
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
return {
|
| 127 |
+
"status": "healthy",
|
| 128 |
+
"models_loaded": models_status,
|
| 129 |
+
"model_files_present": model_files,
|
| 130 |
+
"deployment": "huggingface-spaces-docker"
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
def process_image_with_model(image: Image.Image, model_name: str):
|
| 134 |
+
"""Process image with the specified model"""
|
| 135 |
+
if model_name == "oasis500m":
|
| 136 |
+
if oasis_model is None or oasis_processor is None:
|
| 137 |
+
raise HTTPException(status_code=500, detail="Oasis model not loaded")
|
| 138 |
+
|
| 139 |
+
inputs = oasis_processor(images=image, return_tensors="pt")
|
| 140 |
+
with torch.no_grad():
|
| 141 |
+
outputs = oasis_model(**inputs)
|
| 142 |
+
logits = outputs.logits
|
| 143 |
+
probabilities = F.softmax(logits, dim=-1)
|
| 144 |
+
|
| 145 |
+
# Get top predictions
|
| 146 |
+
top_probs, top_indices = torch.topk(probabilities, 5)
|
| 147 |
+
|
| 148 |
+
predictions = []
|
| 149 |
+
for i in range(top_indices.shape[1]):
|
| 150 |
+
pred = {
|
| 151 |
+
"label": oasis_model.config.id2label[top_indices[0][i].item()],
|
| 152 |
+
"confidence": top_probs[0][i].item()
|
| 153 |
+
}
|
| 154 |
+
predictions.append(pred)
|
| 155 |
+
|
| 156 |
+
return predictions
|
| 157 |
+
|
| 158 |
+
elif model_name == "vit-l-20":
|
| 159 |
+
if vit_model is None or vit_processor is None:
|
| 160 |
+
raise HTTPException(status_code=500, detail="ViT model not loaded")
|
| 161 |
+
|
| 162 |
+
inputs = vit_processor(images=image, return_tensors="pt")
|
| 163 |
+
with torch.no_grad():
|
| 164 |
+
outputs = vit_model(**inputs)
|
| 165 |
+
logits = outputs.logits
|
| 166 |
+
probabilities = F.softmax(logits, dim=-1)
|
| 167 |
+
|
| 168 |
+
# Get top predictions
|
| 169 |
+
top_probs, top_indices = torch.topk(probabilities, 5)
|
| 170 |
+
|
| 171 |
+
predictions = []
|
| 172 |
+
for i in range(top_indices.shape[1]):
|
| 173 |
+
pred = {
|
| 174 |
+
"label": vit_model.config.id2label[top_indices[0][i].item()],
|
| 175 |
+
"confidence": top_probs[0][i].item()
|
| 176 |
+
}
|
| 177 |
+
predictions.append(pred)
|
| 178 |
+
|
| 179 |
+
return predictions
|
| 180 |
+
|
| 181 |
+
else:
|
| 182 |
+
raise HTTPException(status_code=400, detail=f"Unknown model: {model_name}")
|
| 183 |
+
|
| 184 |
+
@app.post("/inference", response_model=InferenceResponse)
|
| 185 |
+
async def inference(request: InferenceRequest):
|
| 186 |
+
"""Inference endpoint using base64 encoded image"""
|
| 187 |
+
try:
|
| 188 |
+
import base64
|
| 189 |
+
|
| 190 |
+
# Decode base64 image
|
| 191 |
+
image_data = base64.b64decode(request.image)
|
| 192 |
+
image = Image.open(io.BytesIO(image_data)).convert('RGB')
|
| 193 |
+
|
| 194 |
+
# Process with model
|
| 195 |
+
predictions = process_image_with_model(image, request.model_name)
|
| 196 |
+
|
| 197 |
+
# Extract confidence scores
|
| 198 |
+
confidence_scores = [pred["confidence"] for pred in predictions]
|
| 199 |
+
|
| 200 |
+
return InferenceResponse(
|
| 201 |
+
predictions=predictions,
|
| 202 |
+
model_used=request.model_name,
|
| 203 |
+
confidence_scores=confidence_scores
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
except Exception as e:
|
| 207 |
+
logger.error(f"Inference error: {e}")
|
| 208 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 209 |
+
|
| 210 |
+
@app.post("/upload_inference", response_model=InferenceResponse)
|
| 211 |
+
async def upload_inference(
|
| 212 |
+
file: UploadFile = File(...),
|
| 213 |
+
model_name: str = "oasis500m"
|
| 214 |
+
):
|
| 215 |
+
"""Inference endpoint using file upload"""
|
| 216 |
+
try:
|
| 217 |
+
# Validate file type
|
| 218 |
+
if not file.content_type.startswith('image/'):
|
| 219 |
+
raise HTTPException(status_code=400, detail="File must be an image")
|
| 220 |
+
|
| 221 |
+
# Read and process image
|
| 222 |
+
image_data = await file.read()
|
| 223 |
+
image = Image.open(io.BytesIO(image_data)).convert('RGB')
|
| 224 |
+
|
| 225 |
+
# Process with model
|
| 226 |
+
predictions = process_image_with_model(image, model_name)
|
| 227 |
+
|
| 228 |
+
# Extract confidence scores
|
| 229 |
+
confidence_scores = [pred["confidence"] for pred in predictions]
|
| 230 |
+
|
| 231 |
+
return InferenceResponse(
|
| 232 |
+
predictions=predictions,
|
| 233 |
+
model_used=model_name,
|
| 234 |
+
confidence_scores=confidence_scores
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
except Exception as e:
|
| 238 |
+
logger.error(f"Upload inference error: {e}")
|
| 239 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 240 |
+
|
| 241 |
+
@app.get("/models")
|
| 242 |
+
async def list_models():
|
| 243 |
+
"""List available models and their status"""
|
| 244 |
+
return {
|
| 245 |
+
"available_models": [
|
| 246 |
+
{
|
| 247 |
+
"name": "oasis500m",
|
| 248 |
+
"description": "Oasis 500M vision model",
|
| 249 |
+
"loaded": oasis_model is not None,
|
| 250 |
+
"file_present": os.path.exists("/app/models/oasis500m.safetensors")
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"name": "vit-l-20",
|
| 254 |
+
"description": "Vision Transformer Large model",
|
| 255 |
+
"loaded": vit_model is not None,
|
| 256 |
+
"file_present": os.path.exists("/app/models/vit-l-20.safetensors")
|
| 257 |
+
}
|
| 258 |
+
]
|
| 259 |
+
}
|
| 260 |
+
|
| 261 |
+
# Hugging Face Spaces specific endpoint for Gradio compatibility
|
| 262 |
+
@app.post("/predict")
|
| 263 |
+
async def predict(file: UploadFile = File(...)):
|
| 264 |
+
"""Simple prediction endpoint for Hugging Face Spaces integration"""
|
| 265 |
+
try:
|
| 266 |
+
# Validate file type
|
| 267 |
+
if not file.content_type.startswith('image/'):
|
| 268 |
+
raise HTTPException(status_code=400, detail="File must be an image")
|
| 269 |
+
|
| 270 |
+
# Read and process image
|
| 271 |
+
image_data = await file.read()
|
| 272 |
+
image = Image.open(io.BytesIO(image_data)).convert('RGB')
|
| 273 |
+
|
| 274 |
+
# Process with default model (oasis500m)
|
| 275 |
+
predictions = process_image_with_model(image, "oasis500m")
|
| 276 |
+
|
| 277 |
+
# Return simplified format for Gradio
|
| 278 |
+
return {
|
| 279 |
+
"predictions": predictions[:3], # Top 3 predictions
|
| 280 |
+
"model_used": "oasis500m"
|
| 281 |
+
}
|
| 282 |
+
|
| 283 |
+
except Exception as e:
|
| 284 |
+
logger.error(f"Predict error: {e}")
|
| 285 |
+
raise HTTPException(status_code=500, detail=str(e))
|
hf_client.py
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Client for testing the ChatGPT Oasis Model Inference API deployed on Hugging Face Spaces
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import requests
|
| 7 |
+
import base64
|
| 8 |
+
import json
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import io
|
| 11 |
+
import os
|
| 12 |
+
import time
|
| 13 |
+
|
| 14 |
+
class HuggingFaceSpacesClient:
|
| 15 |
+
def __init__(self, space_url):
|
| 16 |
+
"""
|
| 17 |
+
Initialize the client with your Hugging Face Space URL
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
space_url (str): Your Space URL (e.g., "https://your-username-chatgpt-oasis.hf.space")
|
| 21 |
+
"""
|
| 22 |
+
self.base_url = space_url.rstrip('/')
|
| 23 |
+
|
| 24 |
+
def health_check(self):
|
| 25 |
+
"""Check if the API is healthy and models are loaded"""
|
| 26 |
+
try:
|
| 27 |
+
response = requests.get(f"{self.base_url}/health", timeout=30)
|
| 28 |
+
print(f"Health Check Status: {response.status_code}")
|
| 29 |
+
print(f"Response: {json.dumps(response.json(), indent=2)}")
|
| 30 |
+
return response.status_code == 200
|
| 31 |
+
except Exception as e:
|
| 32 |
+
print(f"Health check error: {e}")
|
| 33 |
+
return False
|
| 34 |
+
|
| 35 |
+
def list_models(self):
|
| 36 |
+
"""Get information about available models"""
|
| 37 |
+
try:
|
| 38 |
+
response = requests.get(f"{self.base_url}/models", timeout=30)
|
| 39 |
+
print(f"Models Status: {response.status_code}")
|
| 40 |
+
print(f"Available Models: {json.dumps(response.json(), indent=2)}")
|
| 41 |
+
return response.json()
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"Models list error: {e}")
|
| 44 |
+
return None
|
| 45 |
+
|
| 46 |
+
def predict_file_upload(self, image_path, model_name="oasis500m"):
|
| 47 |
+
"""
|
| 48 |
+
Predict using file upload
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
image_path (str): Path to the image file
|
| 52 |
+
model_name (str): Model to use ("oasis500m" or "vit-l-20")
|
| 53 |
+
"""
|
| 54 |
+
if not os.path.exists(image_path):
|
| 55 |
+
print(f"Image file not found: {image_path}")
|
| 56 |
+
return None
|
| 57 |
+
|
| 58 |
+
try:
|
| 59 |
+
with open(image_path, 'rb') as f:
|
| 60 |
+
files = {'file': (os.path.basename(image_path), f, 'image/jpeg')}
|
| 61 |
+
data = {'model_name': model_name}
|
| 62 |
+
|
| 63 |
+
print(f"Uploading {image_path} to {model_name}...")
|
| 64 |
+
response = requests.post(
|
| 65 |
+
f"{self.base_url}/upload_inference",
|
| 66 |
+
files=files,
|
| 67 |
+
data=data,
|
| 68 |
+
timeout=120
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
print(f"Status: {response.status_code}")
|
| 72 |
+
if response.status_code == 200:
|
| 73 |
+
result = response.json()
|
| 74 |
+
print(f"Model used: {result['model_used']}")
|
| 75 |
+
print("Top 3 predictions:")
|
| 76 |
+
for i, pred in enumerate(result['predictions'][:3]):
|
| 77 |
+
print(f" {i+1}. {pred['label']} ({pred['confidence']:.3f})")
|
| 78 |
+
return result
|
| 79 |
+
else:
|
| 80 |
+
print(f"Error: {response.text}")
|
| 81 |
+
return None
|
| 82 |
+
|
| 83 |
+
except Exception as e:
|
| 84 |
+
print(f"File upload prediction error: {e}")
|
| 85 |
+
return None
|
| 86 |
+
|
| 87 |
+
def predict_base64(self, image_path, model_name="oasis500m"):
|
| 88 |
+
"""
|
| 89 |
+
Predict using base64 encoded image
|
| 90 |
+
|
| 91 |
+
Args:
|
| 92 |
+
image_path (str): Path to the image file
|
| 93 |
+
model_name (str): Model to use ("oasis500m" or "vit-l-20")
|
| 94 |
+
"""
|
| 95 |
+
if not os.path.exists(image_path):
|
| 96 |
+
print(f"Image file not found: {image_path}")
|
| 97 |
+
return None
|
| 98 |
+
|
| 99 |
+
try:
|
| 100 |
+
# Load and encode image
|
| 101 |
+
image = Image.open(image_path)
|
| 102 |
+
buffer = io.BytesIO()
|
| 103 |
+
image.save(buffer, format="JPEG")
|
| 104 |
+
image_base64 = base64.b64encode(buffer.getvalue()).decode()
|
| 105 |
+
|
| 106 |
+
print(f"Encoding {image_path} and sending to {model_name}...")
|
| 107 |
+
response = requests.post(
|
| 108 |
+
f"{self.base_url}/inference",
|
| 109 |
+
json={
|
| 110 |
+
"image": image_base64,
|
| 111 |
+
"model_name": model_name
|
| 112 |
+
},
|
| 113 |
+
headers={"Content-Type": "application/json"},
|
| 114 |
+
timeout=120
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
print(f"Status: {response.status_code}")
|
| 118 |
+
if response.status_code == 200:
|
| 119 |
+
result = response.json()
|
| 120 |
+
print(f"Model used: {result['model_used']}")
|
| 121 |
+
print("Top 3 predictions:")
|
| 122 |
+
for i, pred in enumerate(result['predictions'][:3]):
|
| 123 |
+
print(f" {i+1}. {pred['label']} ({pred['confidence']:.3f})")
|
| 124 |
+
return result
|
| 125 |
+
else:
|
| 126 |
+
print(f"Error: {response.text}")
|
| 127 |
+
return None
|
| 128 |
+
|
| 129 |
+
except Exception as e:
|
| 130 |
+
print(f"Base64 prediction error: {e}")
|
| 131 |
+
return None
|
| 132 |
+
|
| 133 |
+
def create_test_image(self, output_path="test_image.jpg"):
|
| 134 |
+
"""Create a simple test image for testing"""
|
| 135 |
+
# Create a simple colored rectangle
|
| 136 |
+
img = Image.new('RGB', (224, 224), color='red')
|
| 137 |
+
img.save(output_path, format='JPEG')
|
| 138 |
+
print(f"Test image created: {output_path}")
|
| 139 |
+
return output_path
|
| 140 |
+
|
| 141 |
+
def test_all_endpoints(self, image_path=None):
|
| 142 |
+
"""Test all endpoints with a given image or create a test image"""
|
| 143 |
+
print("=" * 60)
|
| 144 |
+
print("ChatGPT Oasis Model Inference API - Hugging Face Spaces Test")
|
| 145 |
+
print("=" * 60)
|
| 146 |
+
|
| 147 |
+
# Test health check
|
| 148 |
+
print("\n1. Testing health check...")
|
| 149 |
+
if not self.health_check():
|
| 150 |
+
print("❌ Health check failed. Make sure your Space is running!")
|
| 151 |
+
return
|
| 152 |
+
|
| 153 |
+
# Test models list
|
| 154 |
+
print("\n2. Testing models list...")
|
| 155 |
+
self.list_models()
|
| 156 |
+
|
| 157 |
+
# Use provided image or create test image
|
| 158 |
+
if image_path is None:
|
| 159 |
+
print("\n3. Creating test image...")
|
| 160 |
+
image_path = self.create_test_image()
|
| 161 |
+
else:
|
| 162 |
+
print(f"\n3. Using provided image: {image_path}")
|
| 163 |
+
|
| 164 |
+
# Test both models with file upload
|
| 165 |
+
print("\n4. Testing file upload inference...")
|
| 166 |
+
for model_name in ["oasis500m", "vit-l-20"]:
|
| 167 |
+
print(f"\n--- Testing {model_name} with file upload ---")
|
| 168 |
+
self.predict_file_upload(image_path, model_name)
|
| 169 |
+
time.sleep(2) # Small delay between requests
|
| 170 |
+
|
| 171 |
+
# Test both models with base64
|
| 172 |
+
print("\n5. Testing base64 inference...")
|
| 173 |
+
for model_name in ["oasis500m", "vit-l-20"]:
|
| 174 |
+
print(f"\n--- Testing {model_name} with base64 ---")
|
| 175 |
+
self.predict_base64(image_path, model_name)
|
| 176 |
+
time.sleep(2) # Small delay between requests
|
| 177 |
+
|
| 178 |
+
print("\n" + "=" * 60)
|
| 179 |
+
print("✅ Test completed!")
|
| 180 |
+
|
| 181 |
+
def main():
|
| 182 |
+
"""Main function to run the test client"""
|
| 183 |
+
|
| 184 |
+
# Replace with your actual Hugging Face Space URL
|
| 185 |
+
SPACE_URL = "https://your-username-chatgpt-oasis.hf.space"
|
| 186 |
+
|
| 187 |
+
# Initialize client
|
| 188 |
+
client = HuggingFaceSpacesClient(SPACE_URL)
|
| 189 |
+
|
| 190 |
+
# Test with a specific image if provided
|
| 191 |
+
test_image = None # Change this to a path like "your_image.jpg" if you have one
|
| 192 |
+
|
| 193 |
+
# Run all tests
|
| 194 |
+
client.test_all_endpoints(test_image)
|
| 195 |
+
|
| 196 |
+
if __name__ == "__main__":
|
| 197 |
+
main()
|
main.py
ADDED
|
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
| 2 |
+
from fastapi.responses import JSONResponse
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import io
|
| 9 |
+
import numpy as np
|
| 10 |
+
from typing import List, Dict, Any
|
| 11 |
+
import logging
|
| 12 |
+
|
| 13 |
+
# Configure logging
|
| 14 |
+
logging.basicConfig(level=logging.INFO)
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
+
|
| 17 |
+
app = FastAPI(
|
| 18 |
+
title="ChatGPT Oasis Model Inference API",
|
| 19 |
+
description="FastAPI inference server for Oasis and ViT models",
|
| 20 |
+
version="1.0.0"
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
# Global variables to store loaded models
|
| 24 |
+
oasis_model = None
|
| 25 |
+
oasis_processor = None
|
| 26 |
+
vit_model = None
|
| 27 |
+
vit_processor = None
|
| 28 |
+
|
| 29 |
+
class InferenceRequest(BaseModel):
|
| 30 |
+
image: str # Base64 encoded image
|
| 31 |
+
model_name: str = "oasis500m" # Default to oasis model
|
| 32 |
+
|
| 33 |
+
class InferenceResponse(BaseModel):
|
| 34 |
+
predictions: List[Dict[str, Any]]
|
| 35 |
+
model_used: str
|
| 36 |
+
confidence_scores: List[float]
|
| 37 |
+
|
| 38 |
+
def load_models():
|
| 39 |
+
"""Load both models into memory"""
|
| 40 |
+
global oasis_model, oasis_processor, vit_model, vit_processor
|
| 41 |
+
|
| 42 |
+
try:
|
| 43 |
+
logger.info("Loading Oasis 500M model...")
|
| 44 |
+
# Load Oasis model
|
| 45 |
+
oasis_processor = AutoImageProcessor.from_pretrained("microsoft/oasis-500m")
|
| 46 |
+
oasis_model = AutoModelForImageClassification.from_pretrained("microsoft/oasis-500m")
|
| 47 |
+
oasis_model.eval()
|
| 48 |
+
|
| 49 |
+
logger.info("Loading ViT-L-20 model...")
|
| 50 |
+
# Load ViT model
|
| 51 |
+
vit_processor = AutoImageProcessor.from_pretrained("google/vit-large-patch16-224")
|
| 52 |
+
vit_model = AutoModelForImageClassification.from_pretrained("google/vit-large-patch16-224")
|
| 53 |
+
vit_model.eval()
|
| 54 |
+
|
| 55 |
+
logger.info("All models loaded successfully!")
|
| 56 |
+
|
| 57 |
+
except Exception as e:
|
| 58 |
+
logger.error(f"Error loading models: {e}")
|
| 59 |
+
raise e
|
| 60 |
+
|
| 61 |
+
@app.on_event("startup")
|
| 62 |
+
async def startup_event():
|
| 63 |
+
"""Load models when the application starts"""
|
| 64 |
+
load_models()
|
| 65 |
+
|
| 66 |
+
@app.get("/")
|
| 67 |
+
async def root():
|
| 68 |
+
"""Root endpoint with API information"""
|
| 69 |
+
return {
|
| 70 |
+
"message": "ChatGPT Oasis Model Inference API",
|
| 71 |
+
"version": "1.0.0",
|
| 72 |
+
"available_models": ["oasis500m", "vit-l-20"],
|
| 73 |
+
"endpoints": {
|
| 74 |
+
"health": "/health",
|
| 75 |
+
"inference": "/inference",
|
| 76 |
+
"upload_inference": "/upload_inference"
|
| 77 |
+
}
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
@app.get("/health")
|
| 81 |
+
async def health_check():
|
| 82 |
+
"""Health check endpoint"""
|
| 83 |
+
models_status = {
|
| 84 |
+
"oasis500m": oasis_model is not None,
|
| 85 |
+
"vit-l-20": vit_model is not None
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
+
return {
|
| 89 |
+
"status": "healthy",
|
| 90 |
+
"models_loaded": models_status
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
def process_image_with_model(image: Image.Image, model_name: str):
|
| 94 |
+
"""Process image with the specified model"""
|
| 95 |
+
if model_name == "oasis500m":
|
| 96 |
+
if oasis_model is None or oasis_processor is None:
|
| 97 |
+
raise HTTPException(status_code=500, detail="Oasis model not loaded")
|
| 98 |
+
|
| 99 |
+
inputs = oasis_processor(images=image, return_tensors="pt")
|
| 100 |
+
with torch.no_grad():
|
| 101 |
+
outputs = oasis_model(**inputs)
|
| 102 |
+
logits = outputs.logits
|
| 103 |
+
probabilities = F.softmax(logits, dim=-1)
|
| 104 |
+
|
| 105 |
+
# Get top predictions
|
| 106 |
+
top_probs, top_indices = torch.topk(probabilities, 5)
|
| 107 |
+
|
| 108 |
+
predictions = []
|
| 109 |
+
for i in range(top_indices.shape[1]):
|
| 110 |
+
pred = {
|
| 111 |
+
"label": oasis_model.config.id2label[top_indices[0][i].item()],
|
| 112 |
+
"confidence": top_probs[0][i].item()
|
| 113 |
+
}
|
| 114 |
+
predictions.append(pred)
|
| 115 |
+
|
| 116 |
+
return predictions
|
| 117 |
+
|
| 118 |
+
elif model_name == "vit-l-20":
|
| 119 |
+
if vit_model is None or vit_processor is None:
|
| 120 |
+
raise HTTPException(status_code=500, detail="ViT model not loaded")
|
| 121 |
+
|
| 122 |
+
inputs = vit_processor(images=image, return_tensors="pt")
|
| 123 |
+
with torch.no_grad():
|
| 124 |
+
outputs = vit_model(**inputs)
|
| 125 |
+
logits = outputs.logits
|
| 126 |
+
probabilities = F.softmax(logits, dim=-1)
|
| 127 |
+
|
| 128 |
+
# Get top predictions
|
| 129 |
+
top_probs, top_indices = torch.topk(probabilities, 5)
|
| 130 |
+
|
| 131 |
+
predictions = []
|
| 132 |
+
for i in range(top_indices.shape[1]):
|
| 133 |
+
pred = {
|
| 134 |
+
"label": vit_model.config.id2label[top_indices[0][i].item()],
|
| 135 |
+
"confidence": top_probs[0][i].item()
|
| 136 |
+
}
|
| 137 |
+
predictions.append(pred)
|
| 138 |
+
|
| 139 |
+
return predictions
|
| 140 |
+
|
| 141 |
+
else:
|
| 142 |
+
raise HTTPException(status_code=400, detail=f"Unknown model: {model_name}")
|
| 143 |
+
|
| 144 |
+
@app.post("/inference", response_model=InferenceResponse)
|
| 145 |
+
async def inference(request: InferenceRequest):
|
| 146 |
+
"""Inference endpoint using base64 encoded image"""
|
| 147 |
+
try:
|
| 148 |
+
import base64
|
| 149 |
+
|
| 150 |
+
# Decode base64 image
|
| 151 |
+
image_data = base64.b64decode(request.image)
|
| 152 |
+
image = Image.open(io.BytesIO(image_data)).convert('RGB')
|
| 153 |
+
|
| 154 |
+
# Process with model
|
| 155 |
+
predictions = process_image_with_model(image, request.model_name)
|
| 156 |
+
|
| 157 |
+
# Extract confidence scores
|
| 158 |
+
confidence_scores = [pred["confidence"] for pred in predictions]
|
| 159 |
+
|
| 160 |
+
return InferenceResponse(
|
| 161 |
+
predictions=predictions,
|
| 162 |
+
model_used=request.model_name,
|
| 163 |
+
confidence_scores=confidence_scores
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
except Exception as e:
|
| 167 |
+
logger.error(f"Inference error: {e}")
|
| 168 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 169 |
+
|
| 170 |
+
@app.post("/upload_inference", response_model=InferenceResponse)
|
| 171 |
+
async def upload_inference(
|
| 172 |
+
file: UploadFile = File(...),
|
| 173 |
+
model_name: str = "oasis500m"
|
| 174 |
+
):
|
| 175 |
+
"""Inference endpoint using file upload"""
|
| 176 |
+
try:
|
| 177 |
+
# Validate file type
|
| 178 |
+
if not file.content_type.startswith('image/'):
|
| 179 |
+
raise HTTPException(status_code=400, detail="File must be an image")
|
| 180 |
+
|
| 181 |
+
# Read and process image
|
| 182 |
+
image_data = await file.read()
|
| 183 |
+
image = Image.open(io.BytesIO(image_data)).convert('RGB')
|
| 184 |
+
|
| 185 |
+
# Process with model
|
| 186 |
+
predictions = process_image_with_model(image, model_name)
|
| 187 |
+
|
| 188 |
+
# Extract confidence scores
|
| 189 |
+
confidence_scores = [pred["confidence"] for pred in predictions]
|
| 190 |
+
|
| 191 |
+
return InferenceResponse(
|
| 192 |
+
predictions=predictions,
|
| 193 |
+
model_used=model_name,
|
| 194 |
+
confidence_scores=confidence_scores
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
except Exception as e:
|
| 198 |
+
logger.error(f"Upload inference error: {e}")
|
| 199 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 200 |
+
|
| 201 |
+
@app.get("/models")
|
| 202 |
+
async def list_models():
|
| 203 |
+
"""List available models and their status"""
|
| 204 |
+
return {
|
| 205 |
+
"available_models": [
|
| 206 |
+
{
|
| 207 |
+
"name": "oasis500m",
|
| 208 |
+
"description": "Oasis 500M vision model",
|
| 209 |
+
"loaded": oasis_model is not None
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"name": "vit-l-20",
|
| 213 |
+
"description": "Vision Transformer Large model",
|
| 214 |
+
"loaded": vit_model is not None
|
| 215 |
+
}
|
| 216 |
+
]
|
| 217 |
+
}
|
| 218 |
+
|
| 219 |
+
if __name__ == "__main__":
|
| 220 |
+
import uvicorn
|
| 221 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi==0.104.1
|
| 2 |
+
uvicorn[standard]==0.24.0
|
| 3 |
+
torch==2.1.0
|
| 4 |
+
torchvision==0.16.0
|
| 5 |
+
transformers==4.35.0
|
| 6 |
+
safetensors==0.4.0
|
| 7 |
+
Pillow==10.0.1
|
| 8 |
+
python-multipart==0.0.6
|
| 9 |
+
numpy==1.24.3
|
| 10 |
+
pydantic==2.5.0
|
start_server.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Startup script for the ChatGPT Oasis Model Inference API
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import uvicorn
|
| 7 |
+
import argparse
|
| 8 |
+
import os
|
| 9 |
+
import sys
|
| 10 |
+
|
| 11 |
+
def main():
|
| 12 |
+
parser = argparse.ArgumentParser(description="Start the ChatGPT Oasis Model Inference API")
|
| 13 |
+
parser.add_argument("--host", default="0.0.0.0", help="Host to bind to (default: 0.0.0.0)")
|
| 14 |
+
parser.add_argument("--port", type=int, default=8000, help="Port to bind to (default: 8000)")
|
| 15 |
+
parser.add_argument("--reload", action="store_true", help="Enable auto-reload for development")
|
| 16 |
+
parser.add_argument("--workers", type=int, default=1, help="Number of worker processes (default: 1)")
|
| 17 |
+
parser.add_argument("--log-level", default="info", choices=["debug", "info", "warning", "error"],
|
| 18 |
+
help="Log level (default: info)")
|
| 19 |
+
|
| 20 |
+
args = parser.parse_args()
|
| 21 |
+
|
| 22 |
+
print("Starting ChatGPT Oasis Model Inference API...")
|
| 23 |
+
print(f"Host: {args.host}")
|
| 24 |
+
print(f"Port: {args.port}")
|
| 25 |
+
print(f"Workers: {args.workers}")
|
| 26 |
+
print(f"Log Level: {args.log_level}")
|
| 27 |
+
print(f"Auto-reload: {args.reload}")
|
| 28 |
+
print("-" * 50)
|
| 29 |
+
|
| 30 |
+
# Check if main.py exists
|
| 31 |
+
if not os.path.exists("main.py"):
|
| 32 |
+
print("Error: main.py not found in current directory!")
|
| 33 |
+
sys.exit(1)
|
| 34 |
+
|
| 35 |
+
# Start the server
|
| 36 |
+
uvicorn.run(
|
| 37 |
+
"main:app",
|
| 38 |
+
host=args.host,
|
| 39 |
+
port=args.port,
|
| 40 |
+
reload=args.reload,
|
| 41 |
+
workers=args.workers,
|
| 42 |
+
log_level=args.log_level,
|
| 43 |
+
access_log=True
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
if __name__ == "__main__":
|
| 47 |
+
main()
|
test_client.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Test client for the ChatGPT Oasis Model Inference API
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import requests
|
| 7 |
+
import base64
|
| 8 |
+
import json
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import io
|
| 11 |
+
import os
|
| 12 |
+
|
| 13 |
+
# API base URL
|
| 14 |
+
BASE_URL = "http://localhost:8000"
|
| 15 |
+
|
| 16 |
+
def test_health_check():
|
| 17 |
+
"""Test the health check endpoint"""
|
| 18 |
+
print("Testing health check...")
|
| 19 |
+
try:
|
| 20 |
+
response = requests.get(f"{BASE_URL}/health")
|
| 21 |
+
print(f"Status: {response.status_code}")
|
| 22 |
+
print(f"Response: {json.dumps(response.json(), indent=2)}")
|
| 23 |
+
return response.status_code == 200
|
| 24 |
+
except Exception as e:
|
| 25 |
+
print(f"Error: {e}")
|
| 26 |
+
return False
|
| 27 |
+
|
| 28 |
+
def test_list_models():
|
| 29 |
+
"""Test the models list endpoint"""
|
| 30 |
+
print("\nTesting models list...")
|
| 31 |
+
try:
|
| 32 |
+
response = requests.get(f"{BASE_URL}/models")
|
| 33 |
+
print(f"Status: {response.status_code}")
|
| 34 |
+
print(f"Response: {json.dumps(response.json(), indent=2)}")
|
| 35 |
+
return response.status_code == 200
|
| 36 |
+
except Exception as e:
|
| 37 |
+
print(f"Error: {e}")
|
| 38 |
+
return False
|
| 39 |
+
|
| 40 |
+
def create_test_image():
|
| 41 |
+
"""Create a simple test image"""
|
| 42 |
+
# Create a simple colored rectangle
|
| 43 |
+
img = Image.new('RGB', (224, 224), color='red')
|
| 44 |
+
|
| 45 |
+
# Save to bytes
|
| 46 |
+
buffer = io.BytesIO()
|
| 47 |
+
img.save(buffer, format='JPEG')
|
| 48 |
+
buffer.seek(0)
|
| 49 |
+
|
| 50 |
+
return buffer.getvalue()
|
| 51 |
+
|
| 52 |
+
def test_base64_inference():
|
| 53 |
+
"""Test inference with base64 encoded image"""
|
| 54 |
+
print("\nTesting base64 inference...")
|
| 55 |
+
|
| 56 |
+
# Create test image
|
| 57 |
+
image_data = create_test_image()
|
| 58 |
+
image_base64 = base64.b64encode(image_data).decode()
|
| 59 |
+
|
| 60 |
+
# Test both models
|
| 61 |
+
for model_name in ["oasis500m", "vit-l-20"]:
|
| 62 |
+
print(f"\nTesting {model_name}...")
|
| 63 |
+
try:
|
| 64 |
+
response = requests.post(
|
| 65 |
+
f"{BASE_URL}/inference",
|
| 66 |
+
json={
|
| 67 |
+
"image": image_base64,
|
| 68 |
+
"model_name": model_name
|
| 69 |
+
},
|
| 70 |
+
headers={"Content-Type": "application/json"}
|
| 71 |
+
)
|
| 72 |
+
print(f"Status: {response.status_code}")
|
| 73 |
+
if response.status_code == 200:
|
| 74 |
+
result = response.json()
|
| 75 |
+
print(f"Model used: {result['model_used']}")
|
| 76 |
+
print(f"Top prediction: {result['predictions'][0]}")
|
| 77 |
+
else:
|
| 78 |
+
print(f"Error: {response.text}")
|
| 79 |
+
except Exception as e:
|
| 80 |
+
print(f"Error: {e}")
|
| 81 |
+
|
| 82 |
+
def test_file_upload_inference():
|
| 83 |
+
"""Test inference with file upload"""
|
| 84 |
+
print("\nTesting file upload inference...")
|
| 85 |
+
|
| 86 |
+
# Create test image
|
| 87 |
+
image_data = create_test_image()
|
| 88 |
+
|
| 89 |
+
# Test both models
|
| 90 |
+
for model_name in ["oasis500m", "vit-l-20"]:
|
| 91 |
+
print(f"\nTesting {model_name} with file upload...")
|
| 92 |
+
try:
|
| 93 |
+
files = {'file': ('test_image.jpg', image_data, 'image/jpeg')}
|
| 94 |
+
data = {'model_name': model_name}
|
| 95 |
+
|
| 96 |
+
response = requests.post(
|
| 97 |
+
f"{BASE_URL}/upload_inference",
|
| 98 |
+
files=files,
|
| 99 |
+
data=data
|
| 100 |
+
)
|
| 101 |
+
print(f"Status: {response.status_code}")
|
| 102 |
+
if response.status_code == 200:
|
| 103 |
+
result = response.json()
|
| 104 |
+
print(f"Model used: {result['model_used']}")
|
| 105 |
+
print(f"Top prediction: {result['predictions'][0]}")
|
| 106 |
+
else:
|
| 107 |
+
print(f"Error: {response.text}")
|
| 108 |
+
except Exception as e:
|
| 109 |
+
print(f"Error: {e}")
|
| 110 |
+
|
| 111 |
+
def test_with_real_image(image_path):
|
| 112 |
+
"""Test with a real image file"""
|
| 113 |
+
if not os.path.exists(image_path):
|
| 114 |
+
print(f"Image file not found: {image_path}")
|
| 115 |
+
return
|
| 116 |
+
|
| 117 |
+
print(f"\nTesting with real image: {image_path}")
|
| 118 |
+
|
| 119 |
+
# Test file upload
|
| 120 |
+
try:
|
| 121 |
+
with open(image_path, 'rb') as f:
|
| 122 |
+
files = {'file': (os.path.basename(image_path), f, 'image/jpeg')}
|
| 123 |
+
data = {'model_name': 'oasis500m'}
|
| 124 |
+
|
| 125 |
+
response = requests.post(
|
| 126 |
+
f"{BASE_URL}/upload_inference",
|
| 127 |
+
files=files,
|
| 128 |
+
data=data
|
| 129 |
+
)
|
| 130 |
+
print(f"Status: {response.status_code}")
|
| 131 |
+
if response.status_code == 200:
|
| 132 |
+
result = response.json()
|
| 133 |
+
print(f"Model used: {result['model_used']}")
|
| 134 |
+
print("Top 3 predictions:")
|
| 135 |
+
for i, pred in enumerate(result['predictions'][:3]):
|
| 136 |
+
print(f" {i+1}. {pred['label']} ({pred['confidence']:.3f})")
|
| 137 |
+
else:
|
| 138 |
+
print(f"Error: {response.text}")
|
| 139 |
+
except Exception as e:
|
| 140 |
+
print(f"Error: {e}")
|
| 141 |
+
|
| 142 |
+
def main():
|
| 143 |
+
"""Run all tests"""
|
| 144 |
+
print("ChatGPT Oasis Model Inference API - Test Client")
|
| 145 |
+
print("=" * 50)
|
| 146 |
+
|
| 147 |
+
# Test basic endpoints
|
| 148 |
+
health_ok = test_health_check()
|
| 149 |
+
models_ok = test_list_models()
|
| 150 |
+
|
| 151 |
+
if not health_ok:
|
| 152 |
+
print("Health check failed. Make sure the server is running!")
|
| 153 |
+
return
|
| 154 |
+
|
| 155 |
+
# Test inference endpoints
|
| 156 |
+
test_base64_inference()
|
| 157 |
+
test_file_upload_inference()
|
| 158 |
+
|
| 159 |
+
# Test with real image if available
|
| 160 |
+
test_images = ["test.jpg", "sample.jpg", "image.jpg"]
|
| 161 |
+
for img in test_images:
|
| 162 |
+
if os.path.exists(img):
|
| 163 |
+
test_with_real_image(img)
|
| 164 |
+
break
|
| 165 |
+
|
| 166 |
+
print("\n" + "=" * 50)
|
| 167 |
+
print("Test completed!")
|
| 168 |
+
|
| 169 |
+
if __name__ == "__main__":
|
| 170 |
+
main()
|