Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import requests
|
| 3 |
+
import nltk
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
from rake_nltk import Rake
|
| 6 |
+
from nltk.corpus import stopwords
|
| 7 |
+
from fuzzywuzzy import fuzz
|
| 8 |
+
|
| 9 |
+
s.title("Exploring Torch, Transformers, Rake, and Others analyzing Text")
|
| 10 |
+
|
| 11 |
+
# Define the options for the dropdown menu
|
| 12 |
+
options = ['Option 1', 'Option 2']
|
| 13 |
+
|
| 14 |
+
# Create a dropdown menu to select options
|
| 15 |
+
selected_option = st.selectbox("Select an option", options)
|
| 16 |
+
|
| 17 |
+
# Define URLs for different options
|
| 18 |
+
url_option1 = "https://raw.githubusercontent.com/peteciank/me/main/jd_sm.txt"
|
| 19 |
+
url_option2 = "https://raw.githubusercontent.com/peteciank/me/main/jd_controller.txt"
|
| 20 |
+
|
| 21 |
+
# Function to fetch text content based on selected option
|
| 22 |
+
def fetch_text_content(selected_option):
|
| 23 |
+
if selected_option == 'Option 1':
|
| 24 |
+
return requests.get(url_option1).text
|
| 25 |
+
elif selected_option == 'Option 2':
|
| 26 |
+
return requests.get(url_option2).text
|
| 27 |
+
else:
|
| 28 |
+
return ""
|
| 29 |
+
|
| 30 |
+
# Fetch text content based on selected option
|
| 31 |
+
text_content = fetch_text_content(selected_option)
|
| 32 |
+
|
| 33 |
+
# Display text content in a text area
|
| 34 |
+
jd = st.text_area("Text File Content", text_content)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
# Download NLTK resources
|
| 38 |
+
nltk.download('punkt')
|
| 39 |
+
nltk.download('stopwords')
|
| 40 |
+
|
| 41 |
+
# Initialize pipeline for sentiment analysis
|
| 42 |
+
pipe_sent = pipeline('sentiment-analysis')
|
| 43 |
+
# Initialize pipeline for summarization
|
| 44 |
+
pipe_summ = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 45 |
+
|
| 46 |
+
# Function to extract keywords and remove duplicates
|
| 47 |
+
def extract_keywords(text):
|
| 48 |
+
r = Rake()
|
| 49 |
+
r.extract_keywords_from_text(text)
|
| 50 |
+
# Get all phrases scored
|
| 51 |
+
phrases_with_scores = r.get_ranked_phrases_with_scores()
|
| 52 |
+
# Filter out stopwords
|
| 53 |
+
stop_words = set(stopwords.words('english'))
|
| 54 |
+
keywords = []
|
| 55 |
+
for score, phrase in phrases_with_scores:
|
| 56 |
+
# Check if the phrase is not a stopword and add to the list
|
| 57 |
+
if phrase.lower() not in stop_words:
|
| 58 |
+
keywords.append((score, phrase))
|
| 59 |
+
# Sort keywords by score in descending order
|
| 60 |
+
keywords.sort(key=lambda x: x[0], reverse=True)
|
| 61 |
+
# Remove duplicates and merge similar keywords
|
| 62 |
+
unique_keywords = []
|
| 63 |
+
seen_phrases = set()
|
| 64 |
+
for score, phrase in keywords:
|
| 65 |
+
if phrase not in seen_phrases:
|
| 66 |
+
# Check if the phrase is similar to any of the seen phrases
|
| 67 |
+
similar_phrases = [seen_phrase for seen_phrase in seen_phrases if fuzz.ratio(phrase, seen_phrase) > 70]
|
| 68 |
+
if similar_phrases:
|
| 69 |
+
# If similar phrases are found, merge them into one phrase
|
| 70 |
+
merged_phrase = max([phrase] + similar_phrases, key=len)
|
| 71 |
+
unique_keywords.append((score, merged_phrase))
|
| 72 |
+
else:
|
| 73 |
+
unique_keywords.append((score, phrase))
|
| 74 |
+
seen_phrases.add(phrase)
|
| 75 |
+
return unique_keywords[:10] # Return only the first 10 keywords
|
| 76 |
+
|
| 77 |
+
text = st.text_area('Enter the text to analyze', jd)
|
| 78 |
+
|
| 79 |
+
if text:
|
| 80 |
+
# Sentiment analysis
|
| 81 |
+
st.write("Sentiment Analysis")
|
| 82 |
+
out_sentiment = pipe_sent(text)
|
| 83 |
+
# Display sentiment analysis result
|
| 84 |
+
sentiment_score = out_sentiment[0]['score']
|
| 85 |
+
sentiment_label = out_sentiment[0]['label']
|
| 86 |
+
sentiment_emoji = '😊' if sentiment_label == 'POSITIVE' else '😞'
|
| 87 |
+
sentiment_text = f"Sentiment Score: {sentiment_score}, Sentiment Label: {sentiment_label.capitalize()} {sentiment_emoji}"
|
| 88 |
+
st.write(sentiment_text)
|
| 89 |
+
|
| 90 |
+
# Summarization
|
| 91 |
+
st.write("Summarization")
|
| 92 |
+
out_summ = pipe_summ(text)
|
| 93 |
+
summarized_text = out_summ[0]['summary_text']
|
| 94 |
+
st.write(summarized_text)
|
| 95 |
+
|
| 96 |
+
# Keyword extraction
|
| 97 |
+
st.write("Keywords")
|
| 98 |
+
keywords = extract_keywords(text)
|
| 99 |
+
keyword_list = [keyword[1] for keyword in keywords]
|
| 100 |
+
st.write(keyword_list)
|