File size: 7,993 Bytes
bedf4dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4af70f5
 
2eaccce
bedf4dd
4af70f5
 
8d0f69f
ecbc1ec
bedf4dd
4af70f5
 
 
 
 
 
 
 
 
 
 
 
bedf4dd
 
 
f87d282
 
bedf4dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f87d282
bedf4dd
 
 
ecbc1ec
4af70f5
2eaccce
 
 
ecbc1ec
2eaccce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4af70f5
ecbc1ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2eaccce
4af70f5
ecbc1ec
 
 
4af70f5
 
2eaccce
4af70f5
ecbc1ec
 
 
 
4af70f5
 
2eaccce
4af70f5
ecbc1ec
 
 
 
 
 
 
4af70f5
 
2eaccce
4af70f5
ecbc1ec
 
 
 
4af70f5
 
ecbc1ec
 
 
2eaccce
4af70f5
f87d282
7737dc2
 
bedf4dd
4af70f5
7737dc2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# import os
# import uvicorn
# import inspect

# from mcp.server.fastmcp import FastMCP
# from starlette.requests import Request
# from starlette.responses import PlainTextResponse, JSONResponse

# from langchain_community.utilities import SQLDatabase
# from langchain_community.tools.sql_database.tool import QuerySQLCheckerTool
# from langchain_openai import ChatOpenAI

# llm = ChatOpenAI(
#     api_key=os.environ.get('OPENAI_API_KEY', None),
#     base_url=os.environ['OPENAI_BASE_URL'],
#     model='gpt-4o-mini',
#     temperature=0
# )

# # Create an MCP server and the tool registry
# mcp = FastMCP("Credit Card Database Server")
# tool_registry = []

# def register_tool(fn):
#     """Decorator to register tool metadata and with MCP."""
#     # Register with MCP
#     mcp.tool()(fn)
#     # Save metadata
#     sig = inspect.signature(fn)
#     params = [
#         {
#             "name": param.name,
#             "type": str(param.annotation) if param.annotation is not inspect._empty else "Any",
#             "default": param.default if param.default is not inspect._empty else None,
#         }
#         for param in sig.parameters.values()
#     ]
#     tool_registry.append({
#         "name": fn.__name__,
#         "description": fn.__doc__.strip() if fn.__doc__ else "",
#         "parameters": params,
#     })
#     return fn

# credit_card_db = SQLDatabase.from_uri(r"sqlite:///data/ccms.db")
# query_checker_tool = QuerySQLCheckerTool(db=credit_card_db, llm=llm)

# @mcp.custom_route("/", methods=["GET"])
# async def home(request: Request) -> PlainTextResponse:
#     return PlainTextResponse(
#         """
#         Credit Card Database MCP Server
#         ----
#         Use the following URL to connect with this server
#         https://pgurazada1-credit-card-database-mcp-server.hf.space/mcp/
        
#         Access the following URL for a list of tools and their documentation.
#         https://pgurazada1-credit-card-database-mcp-server.hf.space/tools/
#         """
#     )

# @register_tool
# def sql_db_list_tables():
#     """
#     Returns a comma-separated list of table names in the database.
#     """
#     return credit_card_db.get_usable_table_names()

# @register_tool
# def sql_db_schema(table_names: list[str]) -> str:
#     """
#     Input 'table_names_str' is a comma-separated string of table names.
#     Returns the DDL SQL schema for these tables.
#     """
#     return credit_card_db.get_table_info(table_names)

# @register_tool
# def sql_db_query_checker(query: str) -> str:
#     """
#     Input 'query' is a SQL query string.
#     Checks if the query is valid.
#     If the query is valid, it returns the original query.
#     If the query is not valid, it returns the corrected query.
#     This tool is used to ensure the query is valid before executing it.
#     """
#     return query_checker_tool.run(query)

# @register_tool
# def sql_db_query(query: str) -> str:
#     """
#     Input 'query' is a SQL query string.
#     Executes the query (SELECT only) and returns the result.
#     """
#     return credit_card_db.run(query)

# @mcp.custom_route("/tools", methods=["GET"])
# async def list_tools(request: Request) -> JSONResponse:
#     """Return all registered tool metadata as JSON."""
#     return JSONResponse(tool_registry)

# if __name__ == "__main__":
#     uvicorn.run(mcp.streamable_http_app, host="0.0.0.0", port=8000)

import os
import uvicorn
import inspect
import httpx

from mcp.server.fastmcp import FastMCP
from starlette.requests import Request
from starlette.responses import PlainTextResponse, JSONResponse
from starlette.middleware.base import BaseHTTPMiddleware

from langchain_community.utilities import SQLDatabase
from langchain_community.tools.sql_database.tool import QuerySQLCheckerTool
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(
    api_key=os.environ.get('OPENAI_API_KEY', None),
    base_url=os.environ['OPENAI_BASE_URL'],
    model='gpt-4o-mini',
    temperature=0
)

# Hugging Face Token Auth Middleware
class HuggingFaceTokenAuthMiddleware(BaseHTTPMiddleware):
    async def dispatch(self, request: Request, call_next):
        # Allow "/" to be public, protect everything else
        if request.url.path == "/":
            return await call_next(request)
        # Check Authorization header
        auth = request.headers.get("authorization")
        if not auth or not auth.lower().startswith("bearer "):
            return PlainTextResponse("Missing or invalid Authorization header (expected Bearer token)", status_code=401)
        token = auth.split(" ", 1)[1].strip()
        # Validate token with Hugging Face API
        async with httpx.AsyncClient() as client:
            resp = await client.get(
                "https://huggingface.co/api/whoami-v2",
                headers={"Authorization": f"Bearer {token}"}
            )
            if resp.status_code != 200:
                return PlainTextResponse("Invalid or expired Hugging Face token", status_code=401)
            hf_user_info = resp.json()
        # Attach the HF user info to request.state for downstream use if needed
        request.state.hf_user = hf_user_info
        return await call_next(request)

# Create an MCP server and the tool registry
mcp = FastMCP("Credit Card Database Server")
tool_registry = []

def register_tool(fn):
    """Decorator to register tool metadata and with MCP."""
    mcp.tool()(fn)
    sig = inspect.signature(fn)
    params = [
        {
            "name": param.name,
            "type": str(param.annotation) if param.annotation is not inspect._empty else "Any",
            "default": param.default if param.default is not inspect._empty else None,
        }
        for param in sig.parameters.values()
    ]
    tool_registry.append({
        "name": fn.__name__,
        "description": fn.__doc__.strip() if fn.__doc__ else "",
        "parameters": params,
    })
    return fn

credit_card_db = SQLDatabase.from_uri(r"sqlite:///data/ccms.db")
query_checker_tool = QuerySQLCheckerTool(db=credit_card_db, llm=llm)

@mcp.custom_route("/", methods=["GET"])
async def home(request: Request) -> PlainTextResponse:
    return PlainTextResponse(
        """
        Credit Card Database MCP Server
        ----
        Use the following URL to connect with this server
        https://pgurazada1-credit-card-database-mcp-server.hf.space/mcp/
        
        Access the following URL for a list of tools and their documentation.
        https://pgurazada1-credit-card-database-mcp-server.hf.space/tools/
        """
    )

@register_tool
def sql_db_list_tables():
    """
    Returns a comma-separated list of table names in the database.
    """
    return credit_card_db.get_usable_table_names()

@register_tool
def sql_db_schema(table_names: list[str]) -> str:
    """
    Input 'table_names_str' is a comma-separated string of table names.
    Returns the DDL SQL schema for these tables.
    """
    return credit_card_db.get_table_info(table_names)

@register_tool
def sql_db_query_checker(query: str) -> str:
    """
    Input 'query' is a SQL query string.
    Checks if the query is valid.
    If the query is valid, it returns the original query.
    If the query is not valid, it returns the corrected query.
    This tool is used to ensure the query is valid before executing it.
    """
    return query_checker_tool.run(query)

@register_tool
def sql_db_query(query: str) -> str:
    """
    Input 'query' is a SQL query string.
    Executes the query (SELECT only) and returns the result.
    """
    return credit_card_db.run(query)

@mcp.custom_route("/tools", methods=["GET"])
async def list_tools(request: Request) -> JSONResponse:
    """Return all registered tool metadata as JSON."""
    return JSONResponse(tool_registry)

# --- Build the app and add middleware ---
app = mcp.streamable_http_app()
app.add_middleware(HuggingFaceTokenAuthMiddleware)

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=8000)