Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained("ProtectAI/deberta-v3-base-prompt-injection")
|
| 8 |
+
model = AutoModelForSequenceClassification.from_pretrained("ProtectAI/deberta-v3-base-prompt-injection")
|
| 9 |
+
|
| 10 |
+
classifier = pipeline(
|
| 11 |
+
"text-classification",
|
| 12 |
+
model=model,
|
| 13 |
+
tokenizer=tokenizer,
|
| 14 |
+
truncation=True,
|
| 15 |
+
max_length=512,
|
| 16 |
+
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
def predict(user_input: str):
|
| 20 |
+
|
| 21 |
+
return classifier(user_input)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
textbox = gr.Textbox(placeholder="Enter user input presented for injection attack classification", lines=12)
|
| 25 |
+
|
| 26 |
+
interface = gr.Interface(
|
| 27 |
+
inputs=textbox, fn=predict, outputs="text",
|
| 28 |
+
title="Injection Attack Classifier",
|
| 29 |
+
description="This web API flags if the text presented as input to an LLM qualifies to be an injection attack",
|
| 30 |
+
allow_flagging="manual", flagging_options=["Useful", "Not Useful"]
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
with gr.Blocks() as demo:
|
| 34 |
+
interface.launch()
|
| 35 |
+
|
| 36 |
+
demo.queue(concurrency_count=4)
|
| 37 |
+
demo.launch()
|