Spaces:
Running
on
A10G
Running
on
A10G
Commit
·
7ac65ca
1
Parent(s):
d272750
First test for HuggingSpace
Browse files- app.py +61 -0
- example.jpg +0 -0
- requirements.txt +9 -0
app.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import sys
|
| 3 |
+
import torch
|
| 4 |
+
import torchvision.transforms as T
|
| 5 |
+
import torchvision.transforms.functional as TF
|
| 6 |
+
|
| 7 |
+
sys.path.append('src/blip')
|
| 8 |
+
sys.path.append('src/clip')
|
| 9 |
+
|
| 10 |
+
import clip
|
| 11 |
+
from models.blip import blip_decoder
|
| 12 |
+
|
| 13 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 14 |
+
|
| 15 |
+
print("Loading BLIP model...")
|
| 16 |
+
blip_image_eval_size = 384
|
| 17 |
+
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth'
|
| 18 |
+
blip_model = blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='large', med_config='./src/blip/configs/med_config.json')
|
| 19 |
+
blip_model.eval()
|
| 20 |
+
blip_model = blip_model.to(device)
|
| 21 |
+
|
| 22 |
+
print("Loading CLIP model...")
|
| 23 |
+
clip_model_name = 'ViT-L/14'
|
| 24 |
+
clip_model, clip_preprocess = clip.load(clip_model_name, device=device)
|
| 25 |
+
clip_model.to(device).eval()
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def generate_caption(pil_image):
|
| 29 |
+
gpu_image = T.Compose([
|
| 30 |
+
T.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=TF.InterpolationMode.BICUBIC),
|
| 31 |
+
T.ToTensor(),
|
| 32 |
+
T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
| 33 |
+
])(pil_image).unsqueeze(0).to(device)
|
| 34 |
+
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5)
|
| 37 |
+
return caption[0]
|
| 38 |
+
|
| 39 |
+
def inference(image):
|
| 40 |
+
return generate_caption(image)
|
| 41 |
+
|
| 42 |
+
inputs = [gr.inputs.Image(type='pil')]
|
| 43 |
+
outputs = gr.outputs.Textbox(label="Output")
|
| 44 |
+
|
| 45 |
+
title = "CLIP Interrogator"
|
| 46 |
+
description = "First test of CLIP Interrogator on HuggingSpace"
|
| 47 |
+
article = """
|
| 48 |
+
<p style='text-align: center'>
|
| 49 |
+
<a href="">Colab Notebook</a> /
|
| 50 |
+
<a href="">Github repo</a>
|
| 51 |
+
</p>
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
gr.Interface(
|
| 55 |
+
inference,
|
| 56 |
+
inputs,
|
| 57 |
+
outputs,
|
| 58 |
+
title=title, description=description,
|
| 59 |
+
article=article,
|
| 60 |
+
examples=[['example.jpg']]
|
| 61 |
+
).launch(enable_queue=True)
|
example.jpg
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fairscale
|
| 2 |
+
ftfy
|
| 3 |
+
Pillow
|
| 4 |
+
timm
|
| 5 |
+
torch
|
| 6 |
+
torchvision
|
| 7 |
+
transformers==4.21.2
|
| 8 |
+
-e git+https://github.com/openai/CLIP.git@main#egg=clip
|
| 9 |
+
-e git+https://github.com/salesforce/BLIP.git@main#egg=blip
|