Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| import spaces | |
| import itertools | |
| import pandas as pd | |
| from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
| model_name = 'philipp-zettl/t5-small-long-qa' | |
| qa_model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
| model_name = 'philipp-zettl/t5-small-qg' | |
| qg_model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-small') | |
| # Move only the student model to GPU if available | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| qa_model = qa_model.to(device) | |
| qg_model = qg_model.to(device) | |
| max_questions = 1 | |
| max_answers = 1 | |
| def run_model(inputs, tokenizer, model, temperature=0.5, num_return_sequences=1): | |
| all_outputs = [] | |
| for input_text in inputs: | |
| model_inputs = tokenizer([input_text], max_length=512, padding=True, truncation=True) | |
| input_ids = torch.tensor(model_inputs['input_ids']).to(device) | |
| for sample in input_ids: | |
| sample_outputs = [] | |
| with torch.no_grad(): | |
| sample_output = model.generate( | |
| input_ids[:1], | |
| max_length=85, | |
| temperature=temperature, | |
| do_sample=True, | |
| num_return_sequences=num_return_sequences, | |
| low_memory=True, | |
| num_beams=max(2, num_return_sequences), | |
| use_cache=True, | |
| ) | |
| for i, sample_output in enumerate(sample_output): | |
| sample_output = sample_output.unsqueeze(0) | |
| sample_output = tokenizer.decode(sample_output[0], skip_special_tokens=True) | |
| sample_outputs.append(sample_output) | |
| all_outputs.append(sample_outputs) | |
| return all_outputs | |
| def gen(content, temperature_qg=0.5, temperature_qa=0.75, num_return_sequences_qg=1, num_return_sequences_qa=1): | |
| inputs = [ | |
| f'context: {content}' | |
| ] | |
| question = run_model(inputs, tokenizer, qg_model, temperature_qg, num_return_sequences_qg) | |
| inputs = list(itertools.chain.from_iterable([ | |
| [f'question: {q} {inputs[0]}' for q in q_set] for q_set in question | |
| ])) | |
| answer = run_model(inputs, tokenizer, qa_model, temperature_qa, num_return_sequences_qa) | |
| questions = list(itertools.chain.from_iterable(question)) | |
| answers = list(itertools.chain.from_iterable(answer)) | |
| results = [] | |
| for idx, ans in enumerate(answers): | |
| results.append({'question': questions[idx % num_return_sequences_qg], 'answer': ans}) | |
| return results | |
| def variable_outputs(k, max_elems=10): | |
| k = int(k) | |
| return [gr.Text(visible=True)] * k + [gr.Text(visible=False)] * (max(max_elems, 10)- k) | |
| def set_outputs(content, max_elems=10): | |
| c = eval(content) | |
| print('received content: ', c) | |
| return [gr.Text(value=t, visible=True) for t in c] + [gr.Text(visible=False)] * (max(max_elems, 10) - len(c)) | |
| def create_file_download(qnas): | |
| with open('qnas.tsv', 'w') as f: | |
| for idx, qna in qnas.iterrows(): | |
| f.write(qna['Question'] + '\t' + qna['Answer']) | |
| if idx < len(qnas) - 1: | |
| f.write('\n') | |
| return 'qnas.tsv' | |
| with gr.Blocks() as demo: | |
| with gr.Row(equal_height=True): | |
| with gr.Group("Content"): | |
| content = gr.Textbox(label='Content', lines=15, placeholder='Enter text here', max_lines=10_000) | |
| with gr.Group("Settings"): | |
| temperature_qg = gr.Slider(label='Temperature QG', value=0.5, minimum=0, maximum=1, step=0.01) | |
| temperature_qa = gr.Slider(label='Temperature QA', value=0.75, minimum=0, maximum=1, step=0.01) | |
| num_return_sequences_qg = gr.Number(label='Number Questions', value=max_questions, minimum=1, step=1, maximum=max(max_questions, 10)) | |
| num_return_sequences_qa = gr.Number(label="Number Answers", value=max_answers, minimum=1, step=1, maximum=max(max_questions, 10)) | |
| with gr.Row(): | |
| gen_btn = gr.Button("Generate") | |
| def render_results(content, temperature_qg, temperature_qa, num_return_sequences_qg, num_return_sequences_qa): | |
| qnas = gen(content, temperature_qg, temperature_qa, num_return_sequences_qg, num_return_sequences_qa) | |
| df = gr.Dataframe( | |
| value=[u.values() for u in qnas], | |
| headers=['Question', 'Answer'], | |
| col_count=2, | |
| wrap=True | |
| ) | |
| pd_df = pd.DataFrame([u.values() for u in qnas], columns=['Question', 'Answer']) | |
| download = gr.DownloadButton(label='Download (without headers)', value=create_file_download(pd_df)) | |
| demo.launch() |