Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,15 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
import spaces
|
| 4 |
import itertools
|
| 5 |
import pandas as pd
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
model_name = 'philipp-zettl/t5-small-long-qa'
|
| 10 |
qa_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
@@ -12,17 +17,177 @@ model_name = 'philipp-zettl/t5-small-qg'
|
|
| 12 |
qg_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-small')
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
# Move only the student model to GPU if available
|
| 16 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 17 |
qa_model = qa_model.to(device)
|
| 18 |
qg_model = qg_model.to(device)
|
|
|
|
| 19 |
|
| 20 |
max_questions = 1
|
| 21 |
max_answers = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
all_outputs = []
|
|
|
|
| 26 |
for input_text in inputs:
|
| 27 |
model_inputs = tokenizer([input_text], max_length=512, padding=True, truncation=True)
|
| 28 |
input_ids = torch.tensor(model_inputs['input_ids']).to(device)
|
|
@@ -31,13 +196,31 @@ def run_model(inputs, tokenizer, model, temperature=0.5, num_return_sequences=1)
|
|
| 31 |
with torch.no_grad():
|
| 32 |
sample_output = model.generate(
|
| 33 |
input_ids[:1],
|
| 34 |
-
max_length=
|
| 35 |
-
temperature=temperature,
|
| 36 |
-
do_sample=True,
|
| 37 |
num_return_sequences=num_return_sequences,
|
| 38 |
low_memory=True,
|
| 39 |
-
|
|
|
|
| 40 |
use_cache=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
)
|
| 42 |
for i, sample_output in enumerate(sample_output):
|
| 43 |
sample_output = sample_output.unsqueeze(0)
|
|
@@ -49,19 +232,50 @@ def run_model(inputs, tokenizer, model, temperature=0.5, num_return_sequences=1)
|
|
| 49 |
|
| 50 |
|
| 51 |
@spaces.GPU
|
| 52 |
-
def gen(content, temperature_qg=0.5, temperature_qa=0.75, num_return_sequences_qg=1, num_return_sequences_qa=1):
|
| 53 |
inputs = [
|
| 54 |
f'context: {content}'
|
| 55 |
]
|
| 56 |
-
question = run_model(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
inputs = list(
|
| 59 |
-
[f'question: {q} {
|
| 60 |
]))
|
| 61 |
-
answer = run_model(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
questions = list(
|
| 64 |
-
answers = list(
|
| 65 |
|
| 66 |
results = []
|
| 67 |
for idx, ans in enumerate(answers):
|
|
@@ -70,8 +284,9 @@ def gen(content, temperature_qg=0.5, temperature_qa=0.75, num_return_sequences_q
|
|
| 70 |
|
| 71 |
|
| 72 |
def variable_outputs(k, max_elems=10):
|
|
|
|
| 73 |
k = int(k)
|
| 74 |
-
return [gr.Text(visible=True)] * k + [gr.Text(visible=False)] * (max(max_elems,
|
| 75 |
|
| 76 |
|
| 77 |
def set_outputs(content, max_elems=10):
|
|
@@ -89,22 +304,32 @@ def create_file_download(qnas):
|
|
| 89 |
return 'qnas.tsv'
|
| 90 |
|
| 91 |
|
| 92 |
-
with gr.Blocks() as demo:
|
| 93 |
with gr.Row(equal_height=True):
|
| 94 |
with gr.Group("Content"):
|
| 95 |
content = gr.Textbox(label='Content', lines=15, placeholder='Enter text here', max_lines=10_000)
|
| 96 |
with gr.Group("Settings"):
|
| 97 |
-
temperature_qg = gr.Slider(label='Temperature QG', value=0.
|
| 98 |
-
temperature_qa = gr.Slider(label='Temperature QA', value=0.
|
| 99 |
-
|
| 100 |
-
|
|
|
|
| 101 |
|
| 102 |
with gr.Row():
|
| 103 |
gen_btn = gr.Button("Generate")
|
| 104 |
|
| 105 |
-
@gr.render(
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
df = gr.Dataframe(
|
| 109 |
value=[u.values() for u in qnas],
|
| 110 |
headers=['Question', 'Answer'],
|
|
@@ -116,4 +341,5 @@ with gr.Blocks() as demo:
|
|
| 116 |
download = gr.DownloadButton(label='Download (without headers)', value=create_file_download(pd_df))
|
| 117 |
|
| 118 |
|
| 119 |
-
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
import itertools
|
| 4 |
import pandas as pd
|
| 5 |
+
import spaces
|
| 6 |
+
import random
|
| 7 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModel
|
| 8 |
+
from sklearn.metrics import pairwise_distances
|
| 9 |
+
from collections import Counter
|
| 10 |
+
from itertools import chain
|
| 11 |
+
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
| 12 |
+
import math
|
| 13 |
|
| 14 |
model_name = 'philipp-zettl/t5-small-long-qa'
|
| 15 |
qa_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
|
|
| 17 |
qg_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 18 |
tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-small')
|
| 19 |
|
| 20 |
+
embedding_model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
|
| 21 |
+
embedding_tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
|
| 22 |
+
|
| 23 |
# Move only the student model to GPU if available
|
| 24 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 25 |
qa_model = qa_model.to(device)
|
| 26 |
qg_model = qg_model.to(device)
|
| 27 |
+
embedding_model = embedding_model.to(device)
|
| 28 |
|
| 29 |
max_questions = 1
|
| 30 |
max_answers = 1
|
| 31 |
+
max_elem_value = 100
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def ngrams(sequence, n):
|
| 36 |
+
return [tuple(sequence[i:i+n]) for i in range(len(sequence)-n+1)]
|
| 37 |
+
|
| 38 |
+
def count_ngrams(sequence, max_n):
|
| 39 |
+
counts = Counter()
|
| 40 |
+
for n in range(1, max_n + 1):
|
| 41 |
+
counts.update(ngrams(sequence, n))
|
| 42 |
+
return counts
|
| 43 |
+
|
| 44 |
+
def self_bleu(outputs):
|
| 45 |
+
smoothing_function = SmoothingFunction().method1
|
| 46 |
+
scores = []
|
| 47 |
+
for i in range(len(outputs)):
|
| 48 |
+
references = outputs[:i] + outputs[i+1:]
|
| 49 |
+
# Avoid calculating BLEU score for empty references
|
| 50 |
+
if references:
|
| 51 |
+
scores.append(sentence_bleu(references, outputs[i], smoothing_function=smoothing_function))
|
| 52 |
+
# If all references are empty, return a default value
|
| 53 |
+
if not scores:
|
| 54 |
+
return 0
|
| 55 |
+
return sum(scores) / len(scores)
|
| 56 |
+
|
| 57 |
+
def dist_n(outputs, n):
|
| 58 |
+
all_ngrams = list(chain(*[ngrams(output, n) for output in outputs]))
|
| 59 |
+
unique_ngrams = set(all_ngrams)
|
| 60 |
+
return len(unique_ngrams) / len(all_ngrams) if all_ngrams else 0
|
| 61 |
+
|
| 62 |
+
def perplexity(model, tokenizer, texts):
|
| 63 |
+
encodings = tokenizer(texts, return_tensors='pt', padding=True, truncation=True)
|
| 64 |
+
max_length = model.config.n_positions
|
| 65 |
+
stride = 512
|
| 66 |
+
lls = []
|
| 67 |
+
for i in range(0, encodings.input_ids.size(1), stride):
|
| 68 |
+
begin_loc = max(i + stride - max_length, 0)
|
| 69 |
+
end_loc = i + stride
|
| 70 |
+
trg_len = end_loc - i
|
| 71 |
+
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(model.device)
|
| 72 |
+
target_ids = input_ids.clone()
|
| 73 |
+
target_ids[:, :-trg_len] = -100
|
| 74 |
+
|
| 75 |
+
with torch.no_grad():
|
| 76 |
+
outputs = model(input_ids, labels=target_ids)
|
| 77 |
+
log_likelihood = outputs.loss * trg_len
|
| 78 |
+
lls.append(log_likelihood)
|
| 79 |
+
|
| 80 |
+
ppl = torch.exp(torch.stack(lls).sum() / end_loc)
|
| 81 |
+
return ppl.item()
|
| 82 |
+
|
| 83 |
+
def embedding_similarity(inputs, outputs):
|
| 84 |
+
global embedding_model, embedding_tokenizer, device
|
| 85 |
+
def embed(texts):
|
| 86 |
+
inputs = embedding_tokenizer(texts, return_tensors='pt', padding=True, truncation=True).to(device)
|
| 87 |
+
with torch.no_grad():
|
| 88 |
+
outputs = embedding_model(**inputs)
|
| 89 |
+
return outputs.last_hidden_state.mean(dim=1).cpu().numpy()
|
| 90 |
+
|
| 91 |
+
input_embeddings = embed(inputs)
|
| 92 |
+
output_embeddings = embed(outputs)
|
| 93 |
+
|
| 94 |
+
similarities = pairwise_distances(input_embeddings, output_embeddings, metric='cosine')
|
| 95 |
+
return sum(similarities) / len(similarities)
|
| 96 |
+
|
| 97 |
+
def js_divergence(p, q):
|
| 98 |
+
def kl_divergence(p, q):
|
| 99 |
+
return sum(p[i] * math.log(p[i] / q[i]) for i in range(len(p)) if p[i] != 0 and q[i] != 0)
|
| 100 |
+
|
| 101 |
+
p_norm = [float(i)/sum(p) for i in p]
|
| 102 |
+
q_norm = [float(i)/sum(q) for i in q]
|
| 103 |
+
|
| 104 |
+
m = [(p_norm[i] + q_norm[i]) / 2 for i in range(len(p_norm))]
|
| 105 |
+
|
| 106 |
+
return (kl_divergence(p_norm, m) + kl_divergence(q_norm, m)) / 2
|
| 107 |
+
|
| 108 |
+
def evaluate_model(num_beams, num_beam_groups, model, tokenizer, eval_data, max_length=85):
|
| 109 |
+
generated_outputs = []
|
| 110 |
+
|
| 111 |
+
for input_text in eval_data:
|
| 112 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
| 113 |
+
outputs = model.generate(
|
| 114 |
+
input_ids,
|
| 115 |
+
num_beams=num_beams,
|
| 116 |
+
num_beam_groups=num_beam_groups,
|
| 117 |
+
diversity_penalty=1.0,
|
| 118 |
+
max_new_tokens=max_length,
|
| 119 |
+
)
|
| 120 |
+
decoded_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 121 |
+
generated_outputs.append(decoded_text.split())
|
| 122 |
+
|
| 123 |
+
# Self-BLEU for diversity
|
| 124 |
+
diversity_score = self_bleu(generated_outputs)
|
| 125 |
|
| 126 |
+
# Dist-1 and Dist-2 for diversity
|
| 127 |
+
dist1 = dist_n(generated_outputs, 1)
|
| 128 |
+
dist2 = dist_n(generated_outputs, 2)
|
| 129 |
|
| 130 |
+
# Perplexity for fluency and relevance
|
| 131 |
+
fluency_score = perplexity(model, tokenizer, [" ".join(output) for output in generated_outputs])
|
| 132 |
+
|
| 133 |
+
# Embedding similarity for contextual relevance
|
| 134 |
+
contextual_score = embedding_similarity(eval_data, [" ".join(output) for output in generated_outputs])
|
| 135 |
+
|
| 136 |
+
# Jensen-Shannon Divergence for distribution similarity
|
| 137 |
+
generated_ngrams = count_ngrams(list(chain(*generated_outputs)), 4)
|
| 138 |
+
reference_ngrams = count_ngrams(list(chain(*[tokenizer.tokenize(text) for text in eval_data])), 4)
|
| 139 |
+
all_ngrams = set(generated_ngrams.keys()).union(set(reference_ngrams.keys()))
|
| 140 |
+
p = [generated_ngrams[ngram] for ngram in all_ngrams]
|
| 141 |
+
q = [reference_ngrams[ngram] for ngram in all_ngrams]
|
| 142 |
+
jsd_score = js_divergence(p, q)
|
| 143 |
+
|
| 144 |
+
return {
|
| 145 |
+
"diversity_score": diversity_score,
|
| 146 |
+
"dist1": dist1,
|
| 147 |
+
"dist2": dist2,
|
| 148 |
+
"fluency_score": fluency_score,
|
| 149 |
+
"contextual_score": contextual_score,
|
| 150 |
+
"jsd_score": jsd_score
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
def find_best_parameters(eval_data, model, tokenizer, max_length=85):
|
| 154 |
+
|
| 155 |
+
# Parameter ranges
|
| 156 |
+
parameter_map = {
|
| 157 |
+
2: [2],
|
| 158 |
+
4: [2],
|
| 159 |
+
6: [2], # 6x3 == 4x2
|
| 160 |
+
8: [2], # 8x4 == 6x3 == 4x2
|
| 161 |
+
10: [2], # 10x5 == 8x4 == 6x3 == 4x2
|
| 162 |
+
}
|
| 163 |
+
|
| 164 |
+
# Find the best parameters
|
| 165 |
+
best_score = -float('inf')
|
| 166 |
+
best_params = None
|
| 167 |
+
|
| 168 |
+
for num_beams in parameter_map.keys():
|
| 169 |
+
for num_beam_groups in parameter_map[num_beams]:
|
| 170 |
+
if num_beam_groups > num_beams:
|
| 171 |
+
continue # num_beam_groups should not be greater than num_beams
|
| 172 |
+
|
| 173 |
+
scores = evaluate_model(num_beams, num_beam_groups, model, tokenizer, eval_data, max_length=max_length)
|
| 174 |
+
# Combine scores to determine the best parameters
|
| 175 |
+
combined_score = (scores['dist1'] + scores['dist2'] - scores['fluency_score'] + scores['contextual_score'] - scores['jsd_score']).mean()
|
| 176 |
+
print(f"num_beams={num_beams}, num_beam_groups={num_beam_groups}, avg combined score={combined_score}")
|
| 177 |
+
|
| 178 |
+
if combined_score > best_score:
|
| 179 |
+
best_score = combined_score
|
| 180 |
+
best_params = (num_beams, num_beam_groups)
|
| 181 |
+
|
| 182 |
+
print(f"Best parameters: num_beams={best_params[0]}, num_beam_groups={best_params[1]} with combined score={best_score}")
|
| 183 |
+
return best_params
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def run_model(inputs, tokenizer, model, num_beams=2, num_beam_groups=2, temperature=0.5, num_return_sequences=1, max_length=85):
|
| 189 |
all_outputs = []
|
| 190 |
+
torch.manual_seed(42069)
|
| 191 |
for input_text in inputs:
|
| 192 |
model_inputs = tokenizer([input_text], max_length=512, padding=True, truncation=True)
|
| 193 |
input_ids = torch.tensor(model_inputs['input_ids']).to(device)
|
|
|
|
| 196 |
with torch.no_grad():
|
| 197 |
sample_output = model.generate(
|
| 198 |
input_ids[:1],
|
| 199 |
+
max_length=max_length,
|
| 200 |
+
#temperature=temperature,
|
| 201 |
+
#do_sample=True,
|
| 202 |
num_return_sequences=num_return_sequences,
|
| 203 |
low_memory=True,
|
| 204 |
+
#top_p=temperature,
|
| 205 |
+
#num_beams=max(2, num_return_sequences),
|
| 206 |
use_cache=True,
|
| 207 |
+
# Contrastive search
|
| 208 |
+
#penalty_alpha=0.6,
|
| 209 |
+
#top_k=4,
|
| 210 |
+
# Multi-nomial sampling
|
| 211 |
+
#do_sample=True,
|
| 212 |
+
#num_beams=1,
|
| 213 |
+
# Beam search
|
| 214 |
+
#num_beams=5,
|
| 215 |
+
# Beam search multinomial sampling
|
| 216 |
+
#num_beams=5,
|
| 217 |
+
#do_sample=True,
|
| 218 |
+
# Diverse Beam search decoding
|
| 219 |
+
num_beams=max(2, num_return_sequences),
|
| 220 |
+
num_beam_groups=max(2, num_return_sequences),
|
| 221 |
+
diversity_penalty=temperature,
|
| 222 |
+
#do_sample=True,
|
| 223 |
+
|
| 224 |
)
|
| 225 |
for i, sample_output in enumerate(sample_output):
|
| 226 |
sample_output = sample_output.unsqueeze(0)
|
|
|
|
| 232 |
|
| 233 |
|
| 234 |
@spaces.GPU
|
| 235 |
+
def gen(content, temperature_qg=0.5, temperature_qa=0.75, num_return_sequences_qg=1, num_return_sequences_qa=1, max_length=85):
|
| 236 |
inputs = [
|
| 237 |
f'context: {content}'
|
| 238 |
]
|
| 239 |
+
question = run_model(
|
| 240 |
+
inputs,
|
| 241 |
+
tokenizer,
|
| 242 |
+
qg_model,
|
| 243 |
+
num_beams=num_return_sequences_qg,
|
| 244 |
+
num_beam_groups=num_return_sequences_qg,
|
| 245 |
+
temperature=temperature_qg,
|
| 246 |
+
num_return_sequences=num_return_sequences_qg,
|
| 247 |
+
max_length=max_length
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
q_params = find_best_parameters(list(chain.from_iterable(question)), qg_model, tokenizer, max_length=max_length)
|
| 251 |
+
|
| 252 |
+
question = run_model(
|
| 253 |
+
inputs,
|
| 254 |
+
tokenizer,
|
| 255 |
+
qg_model,
|
| 256 |
+
num_beams=q_params[0],
|
| 257 |
+
num_beam_groups=q_params[1],
|
| 258 |
+
temperature=temperature_qg,
|
| 259 |
+
num_return_sequences=num_return_sequences_qg,
|
| 260 |
+
max_length=max_length
|
| 261 |
+
)
|
| 262 |
|
| 263 |
+
inputs = list(chain.from_iterable([
|
| 264 |
+
[f'question: {q} context: {content}' for q in q_set] for q_set in question
|
| 265 |
]))
|
| 266 |
+
answer = run_model(
|
| 267 |
+
inputs,
|
| 268 |
+
tokenizer,
|
| 269 |
+
qa_model,
|
| 270 |
+
num_beams=num_return_sequences_qa,
|
| 271 |
+
num_beam_groups=num_return_sequences_qa,
|
| 272 |
+
temperature=temperature_qa,
|
| 273 |
+
num_return_sequences=num_return_sequences_qa,
|
| 274 |
+
max_length=max_length
|
| 275 |
+
)
|
| 276 |
|
| 277 |
+
questions = list(chain.from_iterable(question))
|
| 278 |
+
answers = list(chain.from_iterable(answer))
|
| 279 |
|
| 280 |
results = []
|
| 281 |
for idx, ans in enumerate(answers):
|
|
|
|
| 284 |
|
| 285 |
|
| 286 |
def variable_outputs(k, max_elems=10):
|
| 287 |
+
global max_elem_value
|
| 288 |
k = int(k)
|
| 289 |
+
return [gr.Text(visible=True)] * k + [gr.Text(visible=False)] * (max(max_elems, max_elem_value)- k)
|
| 290 |
|
| 291 |
|
| 292 |
def set_outputs(content, max_elems=10):
|
|
|
|
| 304 |
return 'qnas.tsv'
|
| 305 |
|
| 306 |
|
| 307 |
+
with gr.Blocks(css='.hidden_input {display: none;}') as demo:
|
| 308 |
with gr.Row(equal_height=True):
|
| 309 |
with gr.Group("Content"):
|
| 310 |
content = gr.Textbox(label='Content', lines=15, placeholder='Enter text here', max_lines=10_000)
|
| 311 |
with gr.Group("Settings"):
|
| 312 |
+
temperature_qg = gr.Slider(label='Temperature QG', value=0.2, minimum=0, maximum=1, step=0.01)
|
| 313 |
+
temperature_qa = gr.Slider(label='Temperature QA', value=0.5, minimum=0, maximum=1, step=0.01)
|
| 314 |
+
max_length = gr.Number(label='Max Length', value=85, minimum=1, step=1, maximum=512)
|
| 315 |
+
num_return_sequences_qg = gr.Number(label='Number Questions', value=max_questions, minimum=1, step=1, maximum=max(max_questions, max_elem_value))
|
| 316 |
+
num_return_sequences_qa = gr.Number(label="Number Answers", value=max_answers, minimum=1, step=1, maximum=max(max_questions, max_elem_value))
|
| 317 |
|
| 318 |
with gr.Row():
|
| 319 |
gen_btn = gr.Button("Generate")
|
| 320 |
|
| 321 |
+
@gr.render(
|
| 322 |
+
inputs=[
|
| 323 |
+
content, temperature_qg, temperature_qa, num_return_sequences_qg, num_return_sequences_qa,
|
| 324 |
+
max_length
|
| 325 |
+
],
|
| 326 |
+
triggers=[gen_btn.click]
|
| 327 |
+
)
|
| 328 |
+
def render_results(content, temperature_qg, temperature_qa, num_return_sequences_qg, num_return_sequences_qa, max_length):
|
| 329 |
+
qnas = gen(
|
| 330 |
+
content, temperature_qg, temperature_qa, num_return_sequences_qg, num_return_sequences_qa,
|
| 331 |
+
max_length
|
| 332 |
+
)
|
| 333 |
df = gr.Dataframe(
|
| 334 |
value=[u.values() for u in qnas],
|
| 335 |
headers=['Question', 'Answer'],
|
|
|
|
| 341 |
download = gr.DownloadButton(label='Download (without headers)', value=create_file_download(pd_df))
|
| 342 |
|
| 343 |
|
| 344 |
+
|
| 345 |
+
demo.launch()
|