Spaces:
Sleeping
Sleeping
Update: transparent image
Browse files
app.py
CHANGED
|
@@ -8,13 +8,14 @@ from torch import nn
|
|
| 8 |
from transformers import SegformerForSemanticSegmentation
|
| 9 |
import sys
|
| 10 |
import io
|
| 11 |
-
|
| 12 |
|
| 13 |
###################
|
| 14 |
# Setup label names
|
| 15 |
target_list = ['Crack', 'ACrack', 'Wetspot', 'Efflorescence', 'Rust', 'Rockpocket', 'Hollowareas', 'Cavity',
|
| 16 |
'Spalling', 'Graffiti', 'Weathering', 'Restformwork', 'ExposedRebars',
|
| 17 |
'Bearing', 'EJoint', 'Drainage', 'PEquipment', 'JTape', 'WConccor']
|
|
|
|
| 18 |
classes, nclasses = target_list, len(target_list)
|
| 19 |
label2id = dict(zip(classes, range(nclasses)))
|
| 20 |
id2label = dict(zip(range(nclasses), classes))
|
|
@@ -48,7 +49,9 @@ model.eval()
|
|
| 48 |
##################
|
| 49 |
|
| 50 |
to_tensor = transforms.ToTensor()
|
|
|
|
| 51 |
resize = transforms.Resize((512, 512))
|
|
|
|
| 52 |
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
| 53 |
std=[0.229, 0.224, 0.225])
|
| 54 |
|
|
@@ -58,11 +61,50 @@ def process_pil(img):
|
|
| 58 |
img = normalize(img)
|
| 59 |
return img
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
###########
|
| 62 |
# Inference
|
| 63 |
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
| 65 |
img = process_pil(img)
|
|
|
|
| 66 |
mask = model(img.unsqueeze(0)) # we need a batch, hence we introduce an extra dimenation at position 0 (unsqueeze)
|
| 67 |
mask = mask[0]
|
| 68 |
|
|
@@ -85,21 +127,39 @@ def inference(img, name):
|
|
| 85 |
labs = ["ALL"] + target_list
|
| 86 |
|
| 87 |
fig, axes = plt.subplots(5, 4, figsize = (10,10))
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
| 89 |
for i, ax in enumerate(axes.flat):
|
| 90 |
label = labs[i]
|
|
|
|
|
|
|
|
|
|
| 91 |
ax.imshow(mask_preds[i])
|
| 92 |
ax.set_title(label)
|
| 93 |
|
| 94 |
plt.tight_layout()
|
| 95 |
|
| 96 |
-
|
| 97 |
# plt to PIL
|
| 98 |
img_buf = io.BytesIO()
|
| 99 |
fig.savefig(img_buf, format='png')
|
| 100 |
im = Image.open(img_buf)
|
| 101 |
-
return im
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
|
| 105 |
title = "dacl-challenge @ WACV2024"
|
|
@@ -141,15 +201,42 @@ description = """
|
|
| 141 |
"""
|
| 142 |
|
| 143 |
article = "<p style='text-align: center'><a href='https://github.com/phiyodr/dacl10k-toolkit' target='_blank'>Github Repo</a></p>"
|
| 144 |
-
examples=[
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
from transformers import SegformerForSemanticSegmentation
|
| 9 |
import sys
|
| 10 |
import io
|
| 11 |
+
import pdb
|
| 12 |
|
| 13 |
###################
|
| 14 |
# Setup label names
|
| 15 |
target_list = ['Crack', 'ACrack', 'Wetspot', 'Efflorescence', 'Rust', 'Rockpocket', 'Hollowareas', 'Cavity',
|
| 16 |
'Spalling', 'Graffiti', 'Weathering', 'Restformwork', 'ExposedRebars',
|
| 17 |
'Bearing', 'EJoint', 'Drainage', 'PEquipment', 'JTape', 'WConccor']
|
| 18 |
+
target_list_all = ["All"] + target_list
|
| 19 |
classes, nclasses = target_list, len(target_list)
|
| 20 |
label2id = dict(zip(classes, range(nclasses)))
|
| 21 |
id2label = dict(zip(range(nclasses), classes))
|
|
|
|
| 49 |
##################
|
| 50 |
|
| 51 |
to_tensor = transforms.ToTensor()
|
| 52 |
+
to_array = transforms.ToPILImage()
|
| 53 |
resize = transforms.Resize((512, 512))
|
| 54 |
+
resize_small = transforms.Resize((369,369))
|
| 55 |
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
| 56 |
std=[0.229, 0.224, 0.225])
|
| 57 |
|
|
|
|
| 61 |
img = normalize(img)
|
| 62 |
return img
|
| 63 |
|
| 64 |
+
# the background of the image
|
| 65 |
+
def resize_pil(img):
|
| 66 |
+
img = to_tensor(img)
|
| 67 |
+
img = resize_small(img)
|
| 68 |
+
img = to_array(img)
|
| 69 |
+
return img
|
| 70 |
+
|
| 71 |
+
# combine the foreground (mask_all) and background (original image) to create one image
|
| 72 |
+
def transparent(fg, bg, alpha_factor):
|
| 73 |
+
|
| 74 |
+
foreground = np.array(fg)
|
| 75 |
+
background = np.array(bg)
|
| 76 |
+
|
| 77 |
+
background = Image.fromarray(bg)
|
| 78 |
+
foreground = Image.fromarray(fg)
|
| 79 |
+
new_alpha_factor = int(255*alpha_factor)
|
| 80 |
+
foreground.putalpha(new_alpha_factor)
|
| 81 |
+
background.paste(foreground, (0, 0), foreground)
|
| 82 |
+
|
| 83 |
+
return background
|
| 84 |
+
|
| 85 |
+
def show_img(all_imgs, dropdown, bg, alpha_factor):
|
| 86 |
+
idx = target_list_all.index(dropdown)
|
| 87 |
+
fg= all_imgs[idx]["name"]
|
| 88 |
+
|
| 89 |
+
foreground = Image.open(fg)
|
| 90 |
+
background = np.array(bg)
|
| 91 |
+
|
| 92 |
+
background = Image.fromarray(bg)
|
| 93 |
+
new_alpha_factor = int(255*alpha_factor)
|
| 94 |
+
foreground.putalpha(new_alpha_factor)
|
| 95 |
+
background.paste(foreground, (0, 0), foreground)
|
| 96 |
+
|
| 97 |
+
return background
|
| 98 |
+
|
| 99 |
###########
|
| 100 |
# Inference
|
| 101 |
|
| 102 |
+
|
| 103 |
+
def inference(img, alpha_factor):
|
| 104 |
+
background = resize_pil(img)
|
| 105 |
+
|
| 106 |
img = process_pil(img)
|
| 107 |
+
|
| 108 |
mask = model(img.unsqueeze(0)) # we need a batch, hence we introduce an extra dimenation at position 0 (unsqueeze)
|
| 109 |
mask = mask[0]
|
| 110 |
|
|
|
|
| 127 |
labs = ["ALL"] + target_list
|
| 128 |
|
| 129 |
fig, axes = plt.subplots(5, 4, figsize = (10,10))
|
| 130 |
+
|
| 131 |
+
# save all mask_preds in all_mask
|
| 132 |
+
all_masks = []
|
| 133 |
+
|
| 134 |
for i, ax in enumerate(axes.flat):
|
| 135 |
label = labs[i]
|
| 136 |
+
|
| 137 |
+
all_masks.append(mask_preds[i])
|
| 138 |
+
|
| 139 |
ax.imshow(mask_preds[i])
|
| 140 |
ax.set_title(label)
|
| 141 |
|
| 142 |
plt.tight_layout()
|
| 143 |
|
|
|
|
| 144 |
# plt to PIL
|
| 145 |
img_buf = io.BytesIO()
|
| 146 |
fig.savefig(img_buf, format='png')
|
| 147 |
im = Image.open(img_buf)
|
|
|
|
| 148 |
|
| 149 |
+
# Saved all masks combined with unvisible xaxis und yaxis and without a white
|
| 150 |
+
# background.
|
| 151 |
+
all_images = []
|
| 152 |
+
for i in range(len(all_masks)):
|
| 153 |
+
plt.figure()
|
| 154 |
+
fig = plt.imshow(all_masks[i])
|
| 155 |
+
plt.axis('off')
|
| 156 |
+
fig.axes.get_xaxis().set_visible(False)
|
| 157 |
+
fig.axes.get_yaxis().set_visible(False)
|
| 158 |
+
img_buf = io.BytesIO()
|
| 159 |
+
plt.savefig(img_buf, bbox_inches='tight', pad_inches = 0, format='png')
|
| 160 |
+
all_images.append(Image.open(img_buf))
|
| 161 |
+
|
| 162 |
+
return im, all_images, background
|
| 163 |
|
| 164 |
|
| 165 |
title = "dacl-challenge @ WACV2024"
|
|
|
|
| 201 |
"""
|
| 202 |
|
| 203 |
article = "<p style='text-align: center'><a href='https://github.com/phiyodr/dacl10k-toolkit' target='_blank'>Github Repo</a></p>"
|
| 204 |
+
examples=[
|
| 205 |
+
["assets/dacl10k_v2_validation_0026.jpg", "dacl10k_v2_validation_0026.jpg"],
|
| 206 |
+
["assets/dacl10k_v2_validation_0037.jpg", "dacl10k_v2_validation_0037.jpg"],
|
| 207 |
+
["assets/dacl10k_v2_validation_0053.jpg", "dacl10k_v2_validation_0053.jpg"],
|
| 208 |
+
["assets/dacl10k_v2_validation_0068.jpg", "dacl10k_v2_validation_0068.jpg"],
|
| 209 |
+
["assets/dacl10k_v2_validation_0125.jpg", "dacl10k_v2_validation_0125.jpg"],
|
| 210 |
+
["assets/dacl10k_v2_validation_0153.jpg", "dacl10k_v2_validation_0153.jpg"],
|
| 211 |
+
["assets/dacl10k_v2_validation_0263.jpg", "dacl10k_v2_validation_0263.jpg"],
|
| 212 |
+
["assets/dacl10k_v2_validation_0336.jpg", "dacl10k_v2_validation_0336.jpg"],
|
| 213 |
+
["assets/dacl10k_v2_validation_0429.jpg", "dacl10k_v2_validation_0429.jpg"],
|
| 214 |
+
["assets/dacl10k_v2_validation_0500.jpg", "dacl10k_v2_validation_0500.jpg"],
|
| 215 |
+
["assets/dacl10k_v2_validation_0549.jpg", "dacl10k_v2_validation_0549.jpg"],
|
| 216 |
+
["assets/dacl10k_v2_validation_0609.jpg", "dacl10k_v2_validation_0609.jpg"]
|
| 217 |
+
]
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
with gr.Blocks() as app:
|
| 222 |
+
with gr.Row():
|
| 223 |
+
input_img = gr.inputs.Image(type="pil", label="Original Image")
|
| 224 |
+
gr.Examples(examples=examples, inputs=[input_img])
|
| 225 |
+
with gr.Row():
|
| 226 |
+
img = gr.outputs.Image(type="pil", label="All Masks")
|
| 227 |
+
transparent_img = gr.outputs.Image(type="pil", label="Transparent Image")
|
| 228 |
+
with gr.Row():
|
| 229 |
+
slider = gr.Slider(minimum=0, maximum=1, value=0.5, label="Alpha Factor")
|
| 230 |
+
dropdown = gr.Dropdown(choices=target_list_all, label="Pick image", value="All")
|
| 231 |
+
|
| 232 |
+
all_masks = gr.Gallery(visible=False)
|
| 233 |
+
background = gr.Image(visible=False)
|
| 234 |
+
|
| 235 |
+
generate_mask_slider = gr.Button("Generate Masks")
|
| 236 |
+
generate_mask_slider.click(inference, inputs=[input_img], outputs=[img, all_masks, background])
|
| 237 |
+
|
| 238 |
+
submit_transparent_img = gr.Button("Generate Transparent Mask (with Alpha Factor)")
|
| 239 |
+
submit_transparent_img.click(show_img, inputs=[all_masks, dropdown, background, slider], outputs=[transparent_img])
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
app.launch()
|