Spaces:
Running
Running
Commit
·
5093ce6
1
Parent(s):
70768ef
req
Browse files
requirements.txt
CHANGED
|
Binary files a/requirements.txt and b/requirements.txt differ
|
|
|
vouchervision/OCR_google_cloud_vision (DESKTOP-548UDCR's conflicted copy 2024-06-15).py
DELETED
|
@@ -1,850 +0,0 @@
|
|
| 1 |
-
import os, io, sys, inspect, statistics, json, cv2
|
| 2 |
-
from statistics import mean
|
| 3 |
-
# from google.cloud import vision, storage
|
| 4 |
-
from google.cloud import vision
|
| 5 |
-
from google.cloud import vision_v1p3beta1 as vision_beta
|
| 6 |
-
from PIL import Image, ImageDraw, ImageFont
|
| 7 |
-
import colorsys
|
| 8 |
-
from tqdm import tqdm
|
| 9 |
-
from google.oauth2 import service_account
|
| 10 |
-
|
| 11 |
-
### LLaVA should only be installed if the user will actually use it.
|
| 12 |
-
### It requires the most recent pytorch/Python and can mess with older systems
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
'''
|
| 16 |
-
@misc{li2021trocr,
|
| 17 |
-
title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models},
|
| 18 |
-
author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei},
|
| 19 |
-
year={2021},
|
| 20 |
-
eprint={2109.10282},
|
| 21 |
-
archivePrefix={arXiv},
|
| 22 |
-
primaryClass={cs.CL}
|
| 23 |
-
}
|
| 24 |
-
@inproceedings{baek2019character,
|
| 25 |
-
title={Character Region Awareness for Text Detection},
|
| 26 |
-
author={Baek, Youngmin and Lee, Bado and Han, Dongyoon and Yun, Sangdoo and Lee, Hwalsuk},
|
| 27 |
-
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
|
| 28 |
-
pages={9365--9374},
|
| 29 |
-
year={2019}
|
| 30 |
-
}
|
| 31 |
-
'''
|
| 32 |
-
|
| 33 |
-
class OCREngine:
|
| 34 |
-
|
| 35 |
-
BBOX_COLOR = "black"
|
| 36 |
-
|
| 37 |
-
def __init__(self, logger, json_report, dir_home, is_hf, path, cfg, trOCR_model_version, trOCR_model, trOCR_processor, device):
|
| 38 |
-
self.is_hf = is_hf
|
| 39 |
-
self.logger = logger
|
| 40 |
-
|
| 41 |
-
self.json_report = json_report
|
| 42 |
-
|
| 43 |
-
self.path = path
|
| 44 |
-
self.cfg = cfg
|
| 45 |
-
self.do_use_trOCR = self.cfg['leafmachine']['project']['do_use_trOCR']
|
| 46 |
-
self.OCR_option = self.cfg['leafmachine']['project']['OCR_option']
|
| 47 |
-
self.double_OCR = self.cfg['leafmachine']['project']['double_OCR']
|
| 48 |
-
self.dir_home = dir_home
|
| 49 |
-
|
| 50 |
-
# Initialize TrOCR components
|
| 51 |
-
self.trOCR_model_version = trOCR_model_version
|
| 52 |
-
self.trOCR_processor = trOCR_processor
|
| 53 |
-
self.trOCR_model = trOCR_model
|
| 54 |
-
self.device = device
|
| 55 |
-
|
| 56 |
-
self.hand_cleaned_text = None
|
| 57 |
-
self.hand_organized_text = None
|
| 58 |
-
self.hand_bounds = None
|
| 59 |
-
self.hand_bounds_word = None
|
| 60 |
-
self.hand_bounds_flat = None
|
| 61 |
-
self.hand_text_to_box_mapping = None
|
| 62 |
-
self.hand_height = None
|
| 63 |
-
self.hand_confidences = None
|
| 64 |
-
self.hand_characters = None
|
| 65 |
-
|
| 66 |
-
self.normal_cleaned_text = None
|
| 67 |
-
self.normal_organized_text = None
|
| 68 |
-
self.normal_bounds = None
|
| 69 |
-
self.normal_bounds_word = None
|
| 70 |
-
self.normal_text_to_box_mapping = None
|
| 71 |
-
self.normal_bounds_flat = None
|
| 72 |
-
self.normal_height = None
|
| 73 |
-
self.normal_confidences = None
|
| 74 |
-
self.normal_characters = None
|
| 75 |
-
|
| 76 |
-
self.trOCR_texts = None
|
| 77 |
-
self.trOCR_text_to_box_mapping = None
|
| 78 |
-
self.trOCR_bounds_flat = None
|
| 79 |
-
self.trOCR_height = None
|
| 80 |
-
self.trOCR_confidences = None
|
| 81 |
-
self.trOCR_characters = None
|
| 82 |
-
self.set_client()
|
| 83 |
-
self.init_craft()
|
| 84 |
-
|
| 85 |
-
self.multimodal_prompt = """I need you to transcribe all of the text in this image.
|
| 86 |
-
Place the transcribed text into a JSON dictionary with this form {"Transcription_Printed_Text": "text","Transcription_Handwritten_Text": "text"}"""
|
| 87 |
-
self.init_llava()
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
def set_client(self):
|
| 91 |
-
if self.is_hf:
|
| 92 |
-
self.client_beta = vision_beta.ImageAnnotatorClient(credentials=self.get_google_credentials())
|
| 93 |
-
self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())
|
| 94 |
-
else:
|
| 95 |
-
self.client_beta = vision_beta.ImageAnnotatorClient(credentials=self.get_google_credentials())
|
| 96 |
-
self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
def get_google_credentials(self):
|
| 100 |
-
creds_json_str = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
|
| 101 |
-
credentials = service_account.Credentials.from_service_account_info(json.loads(creds_json_str))
|
| 102 |
-
return credentials
|
| 103 |
-
|
| 104 |
-
def init_craft(self):
|
| 105 |
-
if 'CRAFT' in self.OCR_option:
|
| 106 |
-
from craft_text_detector import load_craftnet_model, load_refinenet_model
|
| 107 |
-
|
| 108 |
-
try:
|
| 109 |
-
self.refine_net = load_refinenet_model(cuda=True)
|
| 110 |
-
self.use_cuda = True
|
| 111 |
-
except:
|
| 112 |
-
self.refine_net = load_refinenet_model(cuda=False)
|
| 113 |
-
self.use_cuda = False
|
| 114 |
-
|
| 115 |
-
if self.use_cuda:
|
| 116 |
-
self.craft_net = load_craftnet_model(weight_path=os.path.join(self.dir_home,'vouchervision','craft','craft_mlt_25k.pth'), cuda=True)
|
| 117 |
-
else:
|
| 118 |
-
self.craft_net = load_craftnet_model(weight_path=os.path.join(self.dir_home,'vouchervision','craft','craft_mlt_25k.pth'), cuda=False)
|
| 119 |
-
|
| 120 |
-
def init_llava(self):
|
| 121 |
-
if 'LLaVA' in self.OCR_option:
|
| 122 |
-
from vouchervision.OCR_llava import OCRllava
|
| 123 |
-
|
| 124 |
-
self.model_path = "liuhaotian/" + self.cfg['leafmachine']['project']['OCR_option_llava']
|
| 125 |
-
self.model_quant = self.cfg['leafmachine']['project']['OCR_option_llava_bit']
|
| 126 |
-
|
| 127 |
-
if self.json_report:
|
| 128 |
-
self.json_report.set_text(text_main=f'Loading LLaVA model: {self.model_path} Quantization: {self.model_quant}')
|
| 129 |
-
|
| 130 |
-
if self.model_quant == '4bit':
|
| 131 |
-
use_4bit = True
|
| 132 |
-
elif self.model_quant == 'full':
|
| 133 |
-
use_4bit = False
|
| 134 |
-
else:
|
| 135 |
-
self.logger.info(f"Provided model quantization invlid. Using 4bit.")
|
| 136 |
-
use_4bit = True
|
| 137 |
-
|
| 138 |
-
self.Llava = OCRllava(self.logger, model_path=self.model_path, load_in_4bit=use_4bit, load_in_8bit=False)
|
| 139 |
-
|
| 140 |
-
def init_gemini_vision(self):
|
| 141 |
-
pass
|
| 142 |
-
|
| 143 |
-
def init_gpt4_vision(self):
|
| 144 |
-
pass
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
def detect_text_craft(self):
|
| 148 |
-
from craft_text_detector import read_image, get_prediction
|
| 149 |
-
|
| 150 |
-
# Perform prediction using CRAFT
|
| 151 |
-
image = read_image(self.path)
|
| 152 |
-
|
| 153 |
-
link_threshold = 0.85
|
| 154 |
-
text_threshold = 0.4
|
| 155 |
-
low_text = 0.4
|
| 156 |
-
|
| 157 |
-
if self.use_cuda:
|
| 158 |
-
self.prediction_result = get_prediction(
|
| 159 |
-
image=image,
|
| 160 |
-
craft_net=self.craft_net,
|
| 161 |
-
refine_net=self.refine_net,
|
| 162 |
-
text_threshold=text_threshold,
|
| 163 |
-
link_threshold=link_threshold,
|
| 164 |
-
low_text=low_text,
|
| 165 |
-
cuda=True,
|
| 166 |
-
long_size=1280
|
| 167 |
-
)
|
| 168 |
-
else:
|
| 169 |
-
self.prediction_result = get_prediction(
|
| 170 |
-
image=image,
|
| 171 |
-
craft_net=self.craft_net,
|
| 172 |
-
refine_net=self.refine_net,
|
| 173 |
-
text_threshold=text_threshold,
|
| 174 |
-
link_threshold=link_threshold,
|
| 175 |
-
low_text=low_text,
|
| 176 |
-
cuda=False,
|
| 177 |
-
long_size=1280
|
| 178 |
-
)
|
| 179 |
-
|
| 180 |
-
# Initialize metadata structures
|
| 181 |
-
bounds = []
|
| 182 |
-
bounds_word = [] # CRAFT gives bounds for text regions, not individual words
|
| 183 |
-
text_to_box_mapping = []
|
| 184 |
-
bounds_flat = []
|
| 185 |
-
height_flat = []
|
| 186 |
-
confidences = [] # CRAFT does not provide confidences per character, so this might be uniformly set or estimated
|
| 187 |
-
characters = [] # Simulating as CRAFT doesn't provide character-level details
|
| 188 |
-
organized_text = ""
|
| 189 |
-
|
| 190 |
-
total_b = len(self.prediction_result["boxes"])
|
| 191 |
-
i=0
|
| 192 |
-
# Process each detected text region
|
| 193 |
-
for box in self.prediction_result["boxes"]:
|
| 194 |
-
i+=1
|
| 195 |
-
if self.json_report:
|
| 196 |
-
self.json_report.set_text(text_main=f'Locating text using CRAFT --- {i}/{total_b}')
|
| 197 |
-
|
| 198 |
-
vertices = [{"x": int(vertex[0]), "y": int(vertex[1])} for vertex in box]
|
| 199 |
-
|
| 200 |
-
# Simulate a mapping for the whole detected region as a word
|
| 201 |
-
text_to_box_mapping.append({
|
| 202 |
-
"vertices": vertices,
|
| 203 |
-
"text": "detected_text" # Placeholder, as CRAFT does not provide the text content directly
|
| 204 |
-
})
|
| 205 |
-
|
| 206 |
-
# Assuming each box is a word for the sake of this example
|
| 207 |
-
bounds_word.append({"vertices": vertices})
|
| 208 |
-
|
| 209 |
-
# For simplicity, we're not dividing text regions into characters as CRAFT doesn't provide this
|
| 210 |
-
# Instead, we create a single large 'character' per detected region
|
| 211 |
-
bounds.append({"vertices": vertices})
|
| 212 |
-
|
| 213 |
-
# Simulate flat bounds and height for each detected region
|
| 214 |
-
x_positions = [vertex["x"] for vertex in vertices]
|
| 215 |
-
y_positions = [vertex["y"] for vertex in vertices]
|
| 216 |
-
min_x, max_x = min(x_positions), max(x_positions)
|
| 217 |
-
min_y, max_y = min(y_positions), max(y_positions)
|
| 218 |
-
avg_height = max_y - min_y
|
| 219 |
-
height_flat.append(avg_height)
|
| 220 |
-
|
| 221 |
-
# Assuming uniform confidence for all detected regions
|
| 222 |
-
confidences.append(1.0) # Placeholder confidence
|
| 223 |
-
|
| 224 |
-
# Adding dummy character for each box
|
| 225 |
-
characters.append("X") # Placeholder character
|
| 226 |
-
|
| 227 |
-
# Organize text as a single string (assuming each box is a word)
|
| 228 |
-
# organized_text += "detected_text " # Placeholder text
|
| 229 |
-
|
| 230 |
-
# Update class attributes with processed data
|
| 231 |
-
self.normal_bounds = bounds
|
| 232 |
-
self.normal_bounds_word = bounds_word
|
| 233 |
-
self.normal_text_to_box_mapping = text_to_box_mapping
|
| 234 |
-
self.normal_bounds_flat = bounds_flat # This would be similar to bounds if not processing characters individually
|
| 235 |
-
self.normal_height = height_flat
|
| 236 |
-
self.normal_confidences = confidences
|
| 237 |
-
self.normal_characters = characters
|
| 238 |
-
self.normal_organized_text = organized_text.strip()
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
def detect_text_with_trOCR_using_google_bboxes(self, do_use_trOCR, logger):
|
| 242 |
-
CONFIDENCES = 0.80
|
| 243 |
-
MAX_NEW_TOKENS = 50
|
| 244 |
-
|
| 245 |
-
self.OCR_JSON_to_file = {}
|
| 246 |
-
|
| 247 |
-
ocr_parts = ''
|
| 248 |
-
if not do_use_trOCR:
|
| 249 |
-
if 'normal' in self.OCR_option:
|
| 250 |
-
self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
|
| 251 |
-
# logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}")
|
| 252 |
-
# ocr_parts = ocr_parts + f"Google_OCR_Standard:\n{self.normal_organized_text}"
|
| 253 |
-
ocr_parts = self.normal_organized_text
|
| 254 |
-
|
| 255 |
-
if 'hand' in self.OCR_option:
|
| 256 |
-
self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text
|
| 257 |
-
# logger.info(f"Google_OCR_Handwriting:\n{self.hand_organized_text}")
|
| 258 |
-
# ocr_parts = ocr_parts + f"Google_OCR_Handwriting:\n{self.hand_organized_text}"
|
| 259 |
-
ocr_parts = self.hand_organized_text
|
| 260 |
-
|
| 261 |
-
# if self.OCR_option in ['both',]:
|
| 262 |
-
# logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}")
|
| 263 |
-
# return f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}"
|
| 264 |
-
return ocr_parts
|
| 265 |
-
else:
|
| 266 |
-
logger.info(f'Supplementing with trOCR')
|
| 267 |
-
|
| 268 |
-
self.trOCR_texts = []
|
| 269 |
-
original_image = Image.open(self.path).convert("RGB")
|
| 270 |
-
|
| 271 |
-
if 'normal' in self.OCR_option or 'CRAFT' in self.OCR_option:
|
| 272 |
-
available_bounds = self.normal_bounds_word
|
| 273 |
-
elif 'hand' in self.OCR_option:
|
| 274 |
-
available_bounds = self.hand_bounds_word
|
| 275 |
-
# elif self.OCR_option in ['both',]:
|
| 276 |
-
# available_bounds = self.hand_bounds_word
|
| 277 |
-
else:
|
| 278 |
-
raise
|
| 279 |
-
|
| 280 |
-
text_to_box_mapping = []
|
| 281 |
-
characters = []
|
| 282 |
-
height = []
|
| 283 |
-
confidences = []
|
| 284 |
-
total_b = len(available_bounds)
|
| 285 |
-
i=0
|
| 286 |
-
for bound in tqdm(available_bounds, desc="Processing words using Google Vision bboxes"):
|
| 287 |
-
i+=1
|
| 288 |
-
if self.json_report:
|
| 289 |
-
self.json_report.set_text(text_main=f'Working on trOCR :construction: {i}/{total_b}')
|
| 290 |
-
|
| 291 |
-
vertices = bound["vertices"]
|
| 292 |
-
|
| 293 |
-
left = min([v["x"] for v in vertices])
|
| 294 |
-
top = min([v["y"] for v in vertices])
|
| 295 |
-
right = max([v["x"] for v in vertices])
|
| 296 |
-
bottom = max([v["y"] for v in vertices])
|
| 297 |
-
|
| 298 |
-
# Crop image based on Google's bounding box
|
| 299 |
-
cropped_image = original_image.crop((left, top, right, bottom))
|
| 300 |
-
pixel_values = self.trOCR_processor(cropped_image, return_tensors="pt").pixel_values
|
| 301 |
-
|
| 302 |
-
# Move pixel values to the appropriate device
|
| 303 |
-
pixel_values = pixel_values.to(self.device)
|
| 304 |
-
|
| 305 |
-
generated_ids = self.trOCR_model.generate(pixel_values, max_new_tokens=MAX_NEW_TOKENS)
|
| 306 |
-
extracted_text = self.trOCR_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 307 |
-
self.trOCR_texts.append(extracted_text)
|
| 308 |
-
|
| 309 |
-
# For plotting
|
| 310 |
-
word_length = max(vertex.get('x') for vertex in vertices) - min(vertex.get('x') for vertex in vertices)
|
| 311 |
-
num_symbols = len(extracted_text)
|
| 312 |
-
|
| 313 |
-
Yw = max(vertex.get('y') for vertex in vertices)
|
| 314 |
-
Yo = Yw - min(vertex.get('y') for vertex in vertices)
|
| 315 |
-
X = word_length / num_symbols if num_symbols > 0 else 0
|
| 316 |
-
H = int(X+(Yo*0.1))
|
| 317 |
-
height.append(H)
|
| 318 |
-
|
| 319 |
-
map_dict = {
|
| 320 |
-
"vertices": vertices,
|
| 321 |
-
"text": extracted_text # Use the text extracted by trOCR
|
| 322 |
-
}
|
| 323 |
-
text_to_box_mapping.append(map_dict)
|
| 324 |
-
|
| 325 |
-
characters.append(extracted_text)
|
| 326 |
-
confidences.append(CONFIDENCES)
|
| 327 |
-
|
| 328 |
-
median_height = statistics.median(height) if height else 0
|
| 329 |
-
median_heights = [median_height * 1.5] * len(characters)
|
| 330 |
-
|
| 331 |
-
self.trOCR_texts = ' '.join(self.trOCR_texts)
|
| 332 |
-
|
| 333 |
-
self.trOCR_text_to_box_mapping = text_to_box_mapping
|
| 334 |
-
self.trOCR_bounds_flat = available_bounds
|
| 335 |
-
self.trOCR_height = median_heights
|
| 336 |
-
self.trOCR_confidences = confidences
|
| 337 |
-
self.trOCR_characters = characters
|
| 338 |
-
|
| 339 |
-
if 'normal' in self.OCR_option:
|
| 340 |
-
self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
|
| 341 |
-
self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts
|
| 342 |
-
# logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\ntrOCR:\n{self.trOCR_texts}")
|
| 343 |
-
# ocr_parts = ocr_parts + f"\nGoogle_OCR_Standard:\n{self.normal_organized_text}\n\ntrOCR:\n{self.trOCR_texts}"
|
| 344 |
-
ocr_parts = self.trOCR_texts
|
| 345 |
-
if 'hand' in self.OCR_option:
|
| 346 |
-
self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text
|
| 347 |
-
self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts
|
| 348 |
-
# logger.info(f"Google_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}")
|
| 349 |
-
# ocr_parts = ocr_parts + f"\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}"
|
| 350 |
-
ocr_parts = self.trOCR_texts
|
| 351 |
-
# if self.OCR_option in ['both',]:
|
| 352 |
-
# self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
|
| 353 |
-
# self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text
|
| 354 |
-
# self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts
|
| 355 |
-
# logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}")
|
| 356 |
-
# ocr_parts = ocr_parts + f"\nGoogle_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}"
|
| 357 |
-
if 'CRAFT' in self.OCR_option:
|
| 358 |
-
# self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
|
| 359 |
-
self.OCR_JSON_to_file['OCR_CRAFT_trOCR'] = self.trOCR_texts
|
| 360 |
-
# logger.info(f"CRAFT_trOCR:\n{self.trOCR_texts}")
|
| 361 |
-
# ocr_parts = ocr_parts + f"\nCRAFT_trOCR:\n{self.trOCR_texts}"
|
| 362 |
-
ocr_parts = self.trOCR_texts
|
| 363 |
-
return ocr_parts
|
| 364 |
-
|
| 365 |
-
@staticmethod
|
| 366 |
-
def confidence_to_color(confidence):
|
| 367 |
-
hue = (confidence - 0.5) * 120 / 0.5
|
| 368 |
-
r, g, b = colorsys.hls_to_rgb(hue/360, 0.5, 1)
|
| 369 |
-
return (int(r*255), int(g*255), int(b*255))
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
def render_text_on_black_image(self, option):
|
| 373 |
-
bounds_flat = getattr(self, f'{option}_bounds_flat', [])
|
| 374 |
-
heights = getattr(self, f'{option}_height', [])
|
| 375 |
-
confidences = getattr(self, f'{option}_confidences', [])
|
| 376 |
-
characters = getattr(self, f'{option}_characters', [])
|
| 377 |
-
|
| 378 |
-
original_image = Image.open(self.path)
|
| 379 |
-
width, height = original_image.size
|
| 380 |
-
black_image = Image.new("RGB", (width, height), "black")
|
| 381 |
-
draw = ImageDraw.Draw(black_image)
|
| 382 |
-
|
| 383 |
-
for bound, confidence, char_height, character in zip(bounds_flat, confidences, heights, characters):
|
| 384 |
-
font_size = int(char_height)
|
| 385 |
-
try:
|
| 386 |
-
font = ImageFont.truetype("arial.ttf", font_size)
|
| 387 |
-
except:
|
| 388 |
-
font = ImageFont.load_default().font_variant(size=font_size)
|
| 389 |
-
if option == 'trOCR':
|
| 390 |
-
color = (0, 170, 255)
|
| 391 |
-
else:
|
| 392 |
-
color = OCREngine.confidence_to_color(confidence)
|
| 393 |
-
position = (bound["vertices"][0]["x"], bound["vertices"][0]["y"] - char_height)
|
| 394 |
-
draw.text(position, character, fill=color, font=font)
|
| 395 |
-
|
| 396 |
-
return black_image
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
def merge_images(self, image1, image2):
|
| 400 |
-
width1, height1 = image1.size
|
| 401 |
-
width2, height2 = image2.size
|
| 402 |
-
merged_image = Image.new("RGB", (width1 + width2, max([height1, height2])))
|
| 403 |
-
merged_image.paste(image1, (0, 0))
|
| 404 |
-
merged_image.paste(image2, (width1, 0))
|
| 405 |
-
return merged_image
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
def draw_boxes(self, option):
|
| 409 |
-
bounds = getattr(self, f'{option}_bounds', [])
|
| 410 |
-
bounds_word = getattr(self, f'{option}_bounds_word', [])
|
| 411 |
-
confidences = getattr(self, f'{option}_confidences', [])
|
| 412 |
-
|
| 413 |
-
draw = ImageDraw.Draw(self.image)
|
| 414 |
-
width, height = self.image.size
|
| 415 |
-
if min([width, height]) > 4000:
|
| 416 |
-
line_width_thick = int((width + height) / 2 * 0.0025) # Adjust line width for character level
|
| 417 |
-
line_width_thin = 1
|
| 418 |
-
else:
|
| 419 |
-
line_width_thick = int((width + height) / 2 * 0.005) # Adjust line width for character level
|
| 420 |
-
line_width_thin = 1 #int((width + height) / 2 * 0.001)
|
| 421 |
-
|
| 422 |
-
for bound in bounds_word:
|
| 423 |
-
draw.polygon(
|
| 424 |
-
[
|
| 425 |
-
bound["vertices"][0]["x"], bound["vertices"][0]["y"],
|
| 426 |
-
bound["vertices"][1]["x"], bound["vertices"][1]["y"],
|
| 427 |
-
bound["vertices"][2]["x"], bound["vertices"][2]["y"],
|
| 428 |
-
bound["vertices"][3]["x"], bound["vertices"][3]["y"],
|
| 429 |
-
],
|
| 430 |
-
outline=OCREngine.BBOX_COLOR,
|
| 431 |
-
width=line_width_thin
|
| 432 |
-
)
|
| 433 |
-
|
| 434 |
-
# Draw a line segment at the bottom of each handwritten character
|
| 435 |
-
for bound, confidence in zip(bounds, confidences):
|
| 436 |
-
color = OCREngine.confidence_to_color(confidence)
|
| 437 |
-
# Use the bottom two vertices of the bounding box for the line
|
| 438 |
-
bottom_left = (bound["vertices"][3]["x"], bound["vertices"][3]["y"] + line_width_thick)
|
| 439 |
-
bottom_right = (bound["vertices"][2]["x"], bound["vertices"][2]["y"] + line_width_thick)
|
| 440 |
-
draw.line([bottom_left, bottom_right], fill=color, width=line_width_thick)
|
| 441 |
-
|
| 442 |
-
return self.image
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
def detect_text(self):
|
| 446 |
-
|
| 447 |
-
with io.open(self.path, 'rb') as image_file:
|
| 448 |
-
content = image_file.read()
|
| 449 |
-
image = vision.Image(content=content)
|
| 450 |
-
response = self.client.document_text_detection(image=image)
|
| 451 |
-
texts = response.text_annotations
|
| 452 |
-
|
| 453 |
-
if response.error.message:
|
| 454 |
-
raise Exception(
|
| 455 |
-
'{}\nFor more info on error messages, check: '
|
| 456 |
-
'https://cloud.google.com/apis/design/errors'.format(
|
| 457 |
-
response.error.message))
|
| 458 |
-
|
| 459 |
-
bounds = []
|
| 460 |
-
bounds_word = []
|
| 461 |
-
text_to_box_mapping = []
|
| 462 |
-
bounds_flat = []
|
| 463 |
-
height_flat = []
|
| 464 |
-
confidences = []
|
| 465 |
-
characters = []
|
| 466 |
-
organized_text = ""
|
| 467 |
-
paragraph_count = 0
|
| 468 |
-
|
| 469 |
-
for text in texts[1:]:
|
| 470 |
-
vertices = [{"x": vertex.x, "y": vertex.y} for vertex in text.bounding_poly.vertices]
|
| 471 |
-
map_dict = {
|
| 472 |
-
"vertices": vertices,
|
| 473 |
-
"text": text.description
|
| 474 |
-
}
|
| 475 |
-
text_to_box_mapping.append(map_dict)
|
| 476 |
-
|
| 477 |
-
for page in response.full_text_annotation.pages:
|
| 478 |
-
for block in page.blocks:
|
| 479 |
-
# paragraph_count += 1
|
| 480 |
-
# organized_text += f'OCR_paragraph_{paragraph_count}:\n' # Add paragraph label
|
| 481 |
-
for paragraph in block.paragraphs:
|
| 482 |
-
|
| 483 |
-
avg_H_list = []
|
| 484 |
-
for word in paragraph.words:
|
| 485 |
-
Yw = max(vertex.y for vertex in word.bounding_box.vertices)
|
| 486 |
-
# Calculate the width of the word and divide by the number of symbols
|
| 487 |
-
word_length = max(vertex.x for vertex in word.bounding_box.vertices) - min(vertex.x for vertex in word.bounding_box.vertices)
|
| 488 |
-
num_symbols = len(word.symbols)
|
| 489 |
-
if num_symbols <= 3:
|
| 490 |
-
H = int(Yw - min(vertex.y for vertex in word.bounding_box.vertices))
|
| 491 |
-
else:
|
| 492 |
-
Yo = Yw - min(vertex.y for vertex in word.bounding_box.vertices)
|
| 493 |
-
X = word_length / num_symbols if num_symbols > 0 else 0
|
| 494 |
-
H = int(X+(Yo*0.1))
|
| 495 |
-
avg_H_list.append(H)
|
| 496 |
-
avg_H = int(mean(avg_H_list))
|
| 497 |
-
|
| 498 |
-
words_in_para = []
|
| 499 |
-
for word in paragraph.words:
|
| 500 |
-
# Get word-level bounding box
|
| 501 |
-
bound_word_dict = {
|
| 502 |
-
"vertices": [
|
| 503 |
-
{"x": vertex.x, "y": vertex.y} for vertex in word.bounding_box.vertices
|
| 504 |
-
]
|
| 505 |
-
}
|
| 506 |
-
bounds_word.append(bound_word_dict)
|
| 507 |
-
|
| 508 |
-
Y = max(vertex.y for vertex in word.bounding_box.vertices)
|
| 509 |
-
word_x_start = min(vertex.x for vertex in word.bounding_box.vertices)
|
| 510 |
-
word_x_end = max(vertex.x for vertex in word.bounding_box.vertices)
|
| 511 |
-
num_symbols = len(word.symbols)
|
| 512 |
-
symbol_width = (word_x_end - word_x_start) / num_symbols if num_symbols > 0 else 0
|
| 513 |
-
|
| 514 |
-
current_x_position = word_x_start
|
| 515 |
-
|
| 516 |
-
characters_ind = []
|
| 517 |
-
for symbol in word.symbols:
|
| 518 |
-
bound_dict = {
|
| 519 |
-
"vertices": [
|
| 520 |
-
{"x": vertex.x, "y": vertex.y} for vertex in symbol.bounding_box.vertices
|
| 521 |
-
]
|
| 522 |
-
}
|
| 523 |
-
bounds.append(bound_dict)
|
| 524 |
-
|
| 525 |
-
# Create flat bounds with adjusted x position
|
| 526 |
-
bounds_flat_dict = {
|
| 527 |
-
"vertices": [
|
| 528 |
-
{"x": current_x_position, "y": Y},
|
| 529 |
-
{"x": current_x_position + symbol_width, "y": Y}
|
| 530 |
-
]
|
| 531 |
-
}
|
| 532 |
-
bounds_flat.append(bounds_flat_dict)
|
| 533 |
-
current_x_position += symbol_width
|
| 534 |
-
|
| 535 |
-
height_flat.append(avg_H)
|
| 536 |
-
confidences.append(round(symbol.confidence, 4))
|
| 537 |
-
|
| 538 |
-
characters_ind.append(symbol.text)
|
| 539 |
-
characters.append(symbol.text)
|
| 540 |
-
|
| 541 |
-
words_in_para.append(''.join(characters_ind))
|
| 542 |
-
paragraph_text = ' '.join(words_in_para) # Join words in paragraph
|
| 543 |
-
organized_text += paragraph_text + ' ' #+ '\n'
|
| 544 |
-
|
| 545 |
-
# median_height = statistics.median(height_flat) if height_flat else 0
|
| 546 |
-
# median_heights = [median_height] * len(characters)
|
| 547 |
-
|
| 548 |
-
self.normal_cleaned_text = texts[0].description if texts else ''
|
| 549 |
-
self.normal_organized_text = organized_text
|
| 550 |
-
self.normal_bounds = bounds
|
| 551 |
-
self.normal_bounds_word = bounds_word
|
| 552 |
-
self.normal_text_to_box_mapping = text_to_box_mapping
|
| 553 |
-
self.normal_bounds_flat = bounds_flat
|
| 554 |
-
# self.normal_height = median_heights #height_flat
|
| 555 |
-
self.normal_height = height_flat
|
| 556 |
-
self.normal_confidences = confidences
|
| 557 |
-
self.normal_characters = characters
|
| 558 |
-
return self.normal_cleaned_text
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
def detect_handwritten_ocr(self):
|
| 562 |
-
|
| 563 |
-
with open(self.path, "rb") as image_file:
|
| 564 |
-
content = image_file.read()
|
| 565 |
-
|
| 566 |
-
image = vision_beta.Image(content=content)
|
| 567 |
-
image_context = vision_beta.ImageContext(language_hints=["en-t-i0-handwrit"])
|
| 568 |
-
response = self.client_beta.document_text_detection(image=image, image_context=image_context)
|
| 569 |
-
texts = response.text_annotations
|
| 570 |
-
|
| 571 |
-
if response.error.message:
|
| 572 |
-
raise Exception(
|
| 573 |
-
"{}\nFor more info on error messages, check: "
|
| 574 |
-
"https://cloud.google.com/apis/design/errors".format(response.error.message)
|
| 575 |
-
)
|
| 576 |
-
|
| 577 |
-
bounds = []
|
| 578 |
-
bounds_word = []
|
| 579 |
-
bounds_flat = []
|
| 580 |
-
height_flat = []
|
| 581 |
-
confidences = []
|
| 582 |
-
characters = []
|
| 583 |
-
organized_text = ""
|
| 584 |
-
paragraph_count = 0
|
| 585 |
-
text_to_box_mapping = []
|
| 586 |
-
|
| 587 |
-
for text in texts[1:]:
|
| 588 |
-
vertices = [{"x": vertex.x, "y": vertex.y} for vertex in text.bounding_poly.vertices]
|
| 589 |
-
map_dict = {
|
| 590 |
-
"vertices": vertices,
|
| 591 |
-
"text": text.description
|
| 592 |
-
}
|
| 593 |
-
text_to_box_mapping.append(map_dict)
|
| 594 |
-
|
| 595 |
-
for page in response.full_text_annotation.pages:
|
| 596 |
-
for block in page.blocks:
|
| 597 |
-
# paragraph_count += 1
|
| 598 |
-
# organized_text += f'\nOCR_paragraph_{paragraph_count}:\n' # Add paragraph label
|
| 599 |
-
for paragraph in block.paragraphs:
|
| 600 |
-
|
| 601 |
-
avg_H_list = []
|
| 602 |
-
for word in paragraph.words:
|
| 603 |
-
Yw = max(vertex.y for vertex in word.bounding_box.vertices)
|
| 604 |
-
# Calculate the width of the word and divide by the number of symbols
|
| 605 |
-
word_length = max(vertex.x for vertex in word.bounding_box.vertices) - min(vertex.x for vertex in word.bounding_box.vertices)
|
| 606 |
-
num_symbols = len(word.symbols)
|
| 607 |
-
if num_symbols <= 3:
|
| 608 |
-
H = int(Yw - min(vertex.y for vertex in word.bounding_box.vertices))
|
| 609 |
-
else:
|
| 610 |
-
Yo = Yw - min(vertex.y for vertex in word.bounding_box.vertices)
|
| 611 |
-
X = word_length / num_symbols if num_symbols > 0 else 0
|
| 612 |
-
H = int(X+(Yo*0.1))
|
| 613 |
-
avg_H_list.append(H)
|
| 614 |
-
avg_H = int(mean(avg_H_list))
|
| 615 |
-
|
| 616 |
-
words_in_para = []
|
| 617 |
-
for word in paragraph.words:
|
| 618 |
-
# Get word-level bounding box
|
| 619 |
-
bound_word_dict = {
|
| 620 |
-
"vertices": [
|
| 621 |
-
{"x": vertex.x, "y": vertex.y} for vertex in word.bounding_box.vertices
|
| 622 |
-
]
|
| 623 |
-
}
|
| 624 |
-
bounds_word.append(bound_word_dict)
|
| 625 |
-
|
| 626 |
-
Y = max(vertex.y for vertex in word.bounding_box.vertices)
|
| 627 |
-
word_x_start = min(vertex.x for vertex in word.bounding_box.vertices)
|
| 628 |
-
word_x_end = max(vertex.x for vertex in word.bounding_box.vertices)
|
| 629 |
-
num_symbols = len(word.symbols)
|
| 630 |
-
symbol_width = (word_x_end - word_x_start) / num_symbols if num_symbols > 0 else 0
|
| 631 |
-
|
| 632 |
-
current_x_position = word_x_start
|
| 633 |
-
|
| 634 |
-
characters_ind = []
|
| 635 |
-
for symbol in word.symbols:
|
| 636 |
-
bound_dict = {
|
| 637 |
-
"vertices": [
|
| 638 |
-
{"x": vertex.x, "y": vertex.y} for vertex in symbol.bounding_box.vertices
|
| 639 |
-
]
|
| 640 |
-
}
|
| 641 |
-
bounds.append(bound_dict)
|
| 642 |
-
|
| 643 |
-
# Create flat bounds with adjusted x position
|
| 644 |
-
bounds_flat_dict = {
|
| 645 |
-
"vertices": [
|
| 646 |
-
{"x": current_x_position, "y": Y},
|
| 647 |
-
{"x": current_x_position + symbol_width, "y": Y}
|
| 648 |
-
]
|
| 649 |
-
}
|
| 650 |
-
bounds_flat.append(bounds_flat_dict)
|
| 651 |
-
current_x_position += symbol_width
|
| 652 |
-
|
| 653 |
-
height_flat.append(avg_H)
|
| 654 |
-
confidences.append(round(symbol.confidence, 4))
|
| 655 |
-
|
| 656 |
-
characters_ind.append(symbol.text)
|
| 657 |
-
characters.append(symbol.text)
|
| 658 |
-
|
| 659 |
-
words_in_para.append(''.join(characters_ind))
|
| 660 |
-
paragraph_text = ' '.join(words_in_para) # Join words in paragraph
|
| 661 |
-
organized_text += paragraph_text + ' ' #+ '\n'
|
| 662 |
-
|
| 663 |
-
# median_height = statistics.median(height_flat) if height_flat else 0
|
| 664 |
-
# median_heights = [median_height] * len(characters)
|
| 665 |
-
|
| 666 |
-
self.hand_cleaned_text = response.text_annotations[0].description if response.text_annotations else ''
|
| 667 |
-
self.hand_organized_text = organized_text
|
| 668 |
-
self.hand_bounds = bounds
|
| 669 |
-
self.hand_bounds_word = bounds_word
|
| 670 |
-
self.hand_bounds_flat = bounds_flat
|
| 671 |
-
self.hand_text_to_box_mapping = text_to_box_mapping
|
| 672 |
-
# self.hand_height = median_heights #height_flat
|
| 673 |
-
self.hand_height = height_flat
|
| 674 |
-
self.hand_confidences = confidences
|
| 675 |
-
self.hand_characters = characters
|
| 676 |
-
return self.hand_cleaned_text
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
def process_image(self, do_create_OCR_helper_image, logger):
|
| 680 |
-
# Can stack options, so solitary if statements
|
| 681 |
-
self.OCR = 'OCR:\n'
|
| 682 |
-
if 'CRAFT' in self.OCR_option:
|
| 683 |
-
self.do_use_trOCR = True
|
| 684 |
-
self.detect_text_craft()
|
| 685 |
-
### Optionally add trOCR to the self.OCR for additional context
|
| 686 |
-
if self.double_OCR:
|
| 687 |
-
part_OCR = "\CRAFT trOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
|
| 688 |
-
self.OCR = self.OCR + part_OCR + part_OCR
|
| 689 |
-
else:
|
| 690 |
-
self.OCR = self.OCR + "\CRAFT trOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
|
| 691 |
-
# logger.info(f"CRAFT trOCR:\n{self.OCR}")
|
| 692 |
-
|
| 693 |
-
if 'LLaVA' in self.OCR_option: # This option does not produce an OCR helper image
|
| 694 |
-
if self.json_report:
|
| 695 |
-
self.json_report.set_text(text_main=f'Working on LLaVA {self.Llava.model_path} transcription :construction:')
|
| 696 |
-
|
| 697 |
-
image, json_output, direct_output, str_output, usage_report = self.Llava.transcribe_image(self.path, self.multimodal_prompt)
|
| 698 |
-
self.logger.info(f"LLaVA Usage Report for Model {self.Llava.model_path}:\n{usage_report}")
|
| 699 |
-
|
| 700 |
-
try:
|
| 701 |
-
self.OCR_JSON_to_file['OCR_LLaVA'] = str_output
|
| 702 |
-
except:
|
| 703 |
-
self.OCR_JSON_to_file = {}
|
| 704 |
-
self.OCR_JSON_to_file['OCR_LLaVA'] = str_output
|
| 705 |
-
|
| 706 |
-
if self.double_OCR:
|
| 707 |
-
self.OCR = self.OCR + f"\nLLaVA OCR:\n{str_output}" + f"\nLLaVA OCR:\n{str_output}"
|
| 708 |
-
else:
|
| 709 |
-
self.OCR = self.OCR + f"\nLLaVA OCR:\n{str_output}"
|
| 710 |
-
# logger.info(f"LLaVA OCR:\n{self.OCR}")
|
| 711 |
-
|
| 712 |
-
if 'normal' in self.OCR_option or 'hand' in self.OCR_option:
|
| 713 |
-
if 'normal' in self.OCR_option:
|
| 714 |
-
if self.double_OCR:
|
| 715 |
-
part_OCR = self.OCR + "\nGoogle Printed OCR:\n" + self.detect_text()
|
| 716 |
-
self.OCR = self.OCR + part_OCR + part_OCR
|
| 717 |
-
else:
|
| 718 |
-
self.OCR = self.OCR + "\nGoogle Printed OCR:\n" + self.detect_text()
|
| 719 |
-
if 'hand' in self.OCR_option:
|
| 720 |
-
if self.double_OCR:
|
| 721 |
-
part_OCR = self.OCR + "\nGoogle Handwritten OCR:\n" + self.detect_handwritten_ocr()
|
| 722 |
-
self.OCR = self.OCR + part_OCR + part_OCR
|
| 723 |
-
else:
|
| 724 |
-
self.OCR = self.OCR + "\nGoogle Handwritten OCR:\n" + self.detect_handwritten_ocr()
|
| 725 |
-
# if self.OCR_option not in ['normal', 'hand', 'both']:
|
| 726 |
-
# self.OCR_option = 'both'
|
| 727 |
-
# self.detect_text()
|
| 728 |
-
# self.detect_handwritten_ocr()
|
| 729 |
-
|
| 730 |
-
### Optionally add trOCR to the self.OCR for additional context
|
| 731 |
-
if self.do_use_trOCR:
|
| 732 |
-
if self.double_OCR:
|
| 733 |
-
part_OCR = "\ntrOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
|
| 734 |
-
self.OCR = self.OCR + part_OCR + part_OCR
|
| 735 |
-
else:
|
| 736 |
-
self.OCR = self.OCR + "\ntrOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
|
| 737 |
-
# logger.info(f"OCR:\n{self.OCR}")
|
| 738 |
-
else:
|
| 739 |
-
# populate self.OCR_JSON_to_file = {}
|
| 740 |
-
_ = self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
|
| 741 |
-
|
| 742 |
-
|
| 743 |
-
if do_create_OCR_helper_image and ('LLaVA' not in self.OCR_option):
|
| 744 |
-
self.image = Image.open(self.path)
|
| 745 |
-
|
| 746 |
-
if 'normal' in self.OCR_option:
|
| 747 |
-
image_with_boxes_normal = self.draw_boxes('normal')
|
| 748 |
-
text_image_normal = self.render_text_on_black_image('normal')
|
| 749 |
-
self.merged_image_normal = self.merge_images(image_with_boxes_normal, text_image_normal)
|
| 750 |
-
|
| 751 |
-
if 'hand' in self.OCR_option:
|
| 752 |
-
image_with_boxes_hand = self.draw_boxes('hand')
|
| 753 |
-
text_image_hand = self.render_text_on_black_image('hand')
|
| 754 |
-
self.merged_image_hand = self.merge_images(image_with_boxes_hand, text_image_hand)
|
| 755 |
-
|
| 756 |
-
if self.do_use_trOCR:
|
| 757 |
-
text_image_trOCR = self.render_text_on_black_image('trOCR')
|
| 758 |
-
|
| 759 |
-
if 'CRAFT' in self.OCR_option:
|
| 760 |
-
image_with_boxes_normal = self.draw_boxes('normal')
|
| 761 |
-
self.merged_image_normal = self.merge_images(image_with_boxes_normal, text_image_trOCR)
|
| 762 |
-
|
| 763 |
-
### Merge final overlay image
|
| 764 |
-
### [original, normal bboxes, normal text]
|
| 765 |
-
if 'CRAFT' in self.OCR_option or 'normal' in self.OCR_option:
|
| 766 |
-
self.overlay_image = self.merge_images(Image.open(self.path), self.merged_image_normal)
|
| 767 |
-
### [original, hand bboxes, hand text]
|
| 768 |
-
elif 'hand' in self.OCR_option:
|
| 769 |
-
self.overlay_image = self.merge_images(Image.open(self.path), self.merged_image_hand)
|
| 770 |
-
### [original, normal bboxes, normal text, hand bboxes, hand text]
|
| 771 |
-
else:
|
| 772 |
-
self.overlay_image = self.merge_images(Image.open(self.path), self.merge_images(self.merged_image_normal, self.merged_image_hand))
|
| 773 |
-
|
| 774 |
-
if self.do_use_trOCR:
|
| 775 |
-
if 'CRAFT' in self.OCR_option:
|
| 776 |
-
heat_map_text = Image.fromarray(cv2.cvtColor(self.prediction_result["heatmaps"]["text_score_heatmap"], cv2.COLOR_BGR2RGB))
|
| 777 |
-
heat_map_link = Image.fromarray(cv2.cvtColor(self.prediction_result["heatmaps"]["link_score_heatmap"], cv2.COLOR_BGR2RGB))
|
| 778 |
-
self.overlay_image = self.merge_images(self.overlay_image, heat_map_text)
|
| 779 |
-
self.overlay_image = self.merge_images(self.overlay_image, heat_map_link)
|
| 780 |
-
|
| 781 |
-
else:
|
| 782 |
-
self.overlay_image = self.merge_images(self.overlay_image, text_image_trOCR)
|
| 783 |
-
|
| 784 |
-
else:
|
| 785 |
-
self.merged_image_normal = None
|
| 786 |
-
self.merged_image_hand = None
|
| 787 |
-
self.overlay_image = Image.open(self.path)
|
| 788 |
-
|
| 789 |
-
try:
|
| 790 |
-
from craft_text_detector import empty_cuda_cache
|
| 791 |
-
empty_cuda_cache()
|
| 792 |
-
except:
|
| 793 |
-
pass
|
| 794 |
-
|
| 795 |
-
class SafetyCheck():
|
| 796 |
-
def __init__(self, is_hf) -> None:
|
| 797 |
-
self.is_hf = is_hf
|
| 798 |
-
self.set_client()
|
| 799 |
-
|
| 800 |
-
def set_client(self):
|
| 801 |
-
if self.is_hf:
|
| 802 |
-
self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())
|
| 803 |
-
else:
|
| 804 |
-
self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())
|
| 805 |
-
|
| 806 |
-
def get_google_credentials(self):
|
| 807 |
-
creds_json_str = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
|
| 808 |
-
credentials = service_account.Credentials.from_service_account_info(json.loads(creds_json_str))
|
| 809 |
-
return credentials
|
| 810 |
-
|
| 811 |
-
def check_for_inappropriate_content(self, file_stream):
|
| 812 |
-
try:
|
| 813 |
-
LEVEL = 2
|
| 814 |
-
# content = file_stream.read()
|
| 815 |
-
file_stream.seek(0) # Reset file stream position to the beginning
|
| 816 |
-
content = file_stream.read()
|
| 817 |
-
image = vision.Image(content=content)
|
| 818 |
-
response = self.client.safe_search_detection(image=image)
|
| 819 |
-
safe = response.safe_search_annotation
|
| 820 |
-
|
| 821 |
-
likelihood_name = (
|
| 822 |
-
"UNKNOWN",
|
| 823 |
-
"VERY_UNLIKELY",
|
| 824 |
-
"UNLIKELY",
|
| 825 |
-
"POSSIBLE",
|
| 826 |
-
"LIKELY",
|
| 827 |
-
"VERY_LIKELY",
|
| 828 |
-
)
|
| 829 |
-
print("Safe search:")
|
| 830 |
-
|
| 831 |
-
print(f" adult*: {likelihood_name[safe.adult]}")
|
| 832 |
-
print(f" medical*: {likelihood_name[safe.medical]}")
|
| 833 |
-
print(f" spoofed: {likelihood_name[safe.spoof]}")
|
| 834 |
-
print(f" violence*: {likelihood_name[safe.violence]}")
|
| 835 |
-
print(f" racy: {likelihood_name[safe.racy]}")
|
| 836 |
-
|
| 837 |
-
# Check the levels of adult, violence, racy, etc. content.
|
| 838 |
-
if (safe.adult > LEVEL or
|
| 839 |
-
safe.medical > LEVEL or
|
| 840 |
-
# safe.spoof > LEVEL or
|
| 841 |
-
safe.violence > LEVEL #or
|
| 842 |
-
# safe.racy > LEVEL
|
| 843 |
-
):
|
| 844 |
-
print("Found violation")
|
| 845 |
-
return True # The image violates safe search guidelines.
|
| 846 |
-
|
| 847 |
-
print("Found NO violation")
|
| 848 |
-
return False # The image is considered safe.
|
| 849 |
-
except:
|
| 850 |
-
return False # The image is considered safe. TEMPOROARY FIX TODO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|