Spaces:
Paused
Paused
Peter Larnholt
commited on
Commit
·
0d3d2c6
1
Parent(s):
06f264c
Initial version
Browse files- Dockerfile +22 -0
- app.py +117 -0
- requirements.txt +10 -0
Dockerfile
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM nvidia/cuda:12.1.1-cudnn8-runtime-ubuntu22.04
|
| 2 |
+
|
| 3 |
+
ENV DEBIAN_FRONTEND=noninteractive \
|
| 4 |
+
PYTHONUNBUFFERED=1 \
|
| 5 |
+
PIP_NO_CACHE_DIR=1 \
|
| 6 |
+
HF_HUB_ENABLE_HF_TRANSFER=1
|
| 7 |
+
|
| 8 |
+
# System deps
|
| 9 |
+
RUN apt-get update && apt-get install -y python3 python3-pip git && rm -rf /var/lib/apt/lists/*
|
| 10 |
+
|
| 11 |
+
WORKDIR /app
|
| 12 |
+
|
| 13 |
+
COPY requirements.txt /app/
|
| 14 |
+
RUN python3 -m pip install --upgrade pip && pip3 install -r requirements.txt
|
| 15 |
+
|
| 16 |
+
COPY app.py /app/
|
| 17 |
+
|
| 18 |
+
# HF Spaces expects the app to bind $PORT (we’ll default to 7860)
|
| 19 |
+
ENV PORT=7860
|
| 20 |
+
EXPOSE 7860
|
| 21 |
+
|
| 22 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Docker SDK app for HF Spaces (and local)
|
| 3 |
+
- Launches vLLM (OpenAI-compatible) on localhost:API_PORT
|
| 4 |
+
- FastAPI proxies /v1/* to vLLM (so clients can use OpenAI SDK / LangChain)
|
| 5 |
+
- Gradio chat UI at "/"
|
| 6 |
+
- A10G-24GB friendly defaults (Qwen 2.5 14B AWQ, 8k ctx)
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import os, time, threading, subprocess, requests, json
|
| 10 |
+
from fastapi import FastAPI, Request, Response
|
| 11 |
+
from fastapi.responses import JSONResponse
|
| 12 |
+
import gradio as gr
|
| 13 |
+
|
| 14 |
+
# -------- Config (env overridable) --------
|
| 15 |
+
MODEL_ID = os.environ.get("MODEL_ID", "Qwen/Qwen2.5-14B-Instruct-AWQ")
|
| 16 |
+
API_PORT = int(os.environ.get("API_PORT", "8000")) # vLLM internal port
|
| 17 |
+
SYSTEM_PROMPT = os.environ.get(
|
| 18 |
+
"SYSTEM_PROMPT",
|
| 19 |
+
"You are ExCom AI, a professional assistant that answers precisely and clearly."
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# Memory-friendly defaults for A10G (24 GB)
|
| 23 |
+
VLLM_ARGS = [
|
| 24 |
+
"python3", "-m", "vllm.entrypoints.openai.api_server",
|
| 25 |
+
"--model", MODEL_ID,
|
| 26 |
+
"--host", "0.0.0.0",
|
| 27 |
+
"--port", str(API_PORT),
|
| 28 |
+
"--served-model-name", "excom-ai",
|
| 29 |
+
"--max-model-len", "8192",
|
| 30 |
+
"--gpu-memory-utilization", "0.90",
|
| 31 |
+
"--trust-remote-code",
|
| 32 |
+
]
|
| 33 |
+
if "AWQ" in MODEL_ID.upper():
|
| 34 |
+
# faster AWQ kernel if available
|
| 35 |
+
VLLM_ARGS += ["--quantization", "awq_marlin"]
|
| 36 |
+
|
| 37 |
+
# -------- vLLM launcher (non-blocking) --------
|
| 38 |
+
def launch_vllm():
|
| 39 |
+
print(f"[vLLM] Launching with MODEL_ID={MODEL_ID}")
|
| 40 |
+
subprocess.Popen(VLLM_ARGS)
|
| 41 |
+
|
| 42 |
+
def wait_vllm_ready(timeout=900, interval=3):
|
| 43 |
+
base = f"http://127.0.0.1:{API_PORT}/v1/models"
|
| 44 |
+
start = time.time()
|
| 45 |
+
while time.time() - start < timeout:
|
| 46 |
+
try:
|
| 47 |
+
r = requests.get(base, timeout=3)
|
| 48 |
+
if r.ok:
|
| 49 |
+
print("[vLLM] Ready.")
|
| 50 |
+
return True
|
| 51 |
+
except Exception:
|
| 52 |
+
pass
|
| 53 |
+
time.sleep(interval)
|
| 54 |
+
print("[vLLM] Failed to become ready in time.")
|
| 55 |
+
return False
|
| 56 |
+
|
| 57 |
+
# Start vLLM in background at process start
|
| 58 |
+
threading.Thread(target=launch_vllm, daemon=True).start()
|
| 59 |
+
threading.Thread(target=wait_vllm_ready, daemon=True).start()
|
| 60 |
+
|
| 61 |
+
# -------- FastAPI app --------
|
| 62 |
+
app = FastAPI()
|
| 63 |
+
|
| 64 |
+
@app.get("/health")
|
| 65 |
+
def health():
|
| 66 |
+
try:
|
| 67 |
+
r = requests.get(f"http://127.0.0.1:{API_PORT}/v1/models", timeout=2)
|
| 68 |
+
return {"upstream_ok": r.ok}
|
| 69 |
+
except Exception as e:
|
| 70 |
+
return {"upstream_ok": False, "error": str(e)}
|
| 71 |
+
|
| 72 |
+
# Minimal proxy for OpenAI-compatible routes
|
| 73 |
+
@app.get("/v1/models")
|
| 74 |
+
def proxy_models():
|
| 75 |
+
r = requests.get(f"http://127.0.0.1:{API_PORT}/v1/models", timeout=20)
|
| 76 |
+
return Response(content=r.content, media_type=r.headers.get("content-type", "application/json"), status_code=r.status_code)
|
| 77 |
+
|
| 78 |
+
@app.post("/v1/chat/completions")
|
| 79 |
+
async def proxy_chat(request: Request):
|
| 80 |
+
body = await request.body()
|
| 81 |
+
r = requests.post(f"http://127.0.0.1:{API_PORT}/v1/chat/completions",
|
| 82 |
+
data=body,
|
| 83 |
+
headers={"Content-Type": "application/json"},
|
| 84 |
+
timeout=600)
|
| 85 |
+
return Response(content=r.content, media_type=r.headers.get("content-type", "application/json"), status_code=r.status_code)
|
| 86 |
+
|
| 87 |
+
# -------- Gradio UI (messages mode) --------
|
| 88 |
+
_ready_flag = {"ok": False}
|
| 89 |
+
def ensure_ready():
|
| 90 |
+
if _ready_flag["ok"]:
|
| 91 |
+
return True
|
| 92 |
+
if wait_vllm_ready(timeout=60):
|
| 93 |
+
_ready_flag["ok"] = True
|
| 94 |
+
return True
|
| 95 |
+
return False
|
| 96 |
+
|
| 97 |
+
def chat_fn(user_message: str, history: list[dict]):
|
| 98 |
+
if not ensure_ready():
|
| 99 |
+
return "⏳ Model is loading… please retry in a few seconds."
|
| 100 |
+
messages = [{"role": "system", "content": SYSTEM_PROMPT}] + history + [
|
| 101 |
+
{"role": "user", "content": user_message}
|
| 102 |
+
]
|
| 103 |
+
payload = {"model": "excom-ai", "messages": messages, "temperature": 0.4}
|
| 104 |
+
r = requests.post(f"http://127.0.0.1:{API_PORT}/v1/chat/completions",
|
| 105 |
+
json=payload, timeout=600)
|
| 106 |
+
r.raise_for_status()
|
| 107 |
+
return r.json()["choices"][0]["message"]["content"]
|
| 108 |
+
|
| 109 |
+
demo = gr.ChatInterface(
|
| 110 |
+
fn=chat_fn,
|
| 111 |
+
title="ExCom AI — Qwen 2.5 14B AWQ (vLLM)",
|
| 112 |
+
type="messages",
|
| 113 |
+
examples=["Hello", "What can you do?", "Explain ExCom AI in one line."],
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# mount Gradio at root
|
| 117 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi>=0.111
|
| 2 |
+
uvicorn[standard]>=0.30
|
| 3 |
+
gradio>=4.38
|
| 4 |
+
requests>=2.31
|
| 5 |
+
|
| 6 |
+
# vLLM & friends
|
| 7 |
+
vllm>=0.5.2
|
| 8 |
+
transformers>=4.43
|
| 9 |
+
torch>=2.2
|
| 10 |
+
accelerate
|