""" Docker SDK app for HF Spaces (and local) - Launches vLLM (OpenAI-compatible) on localhost:API_PORT - FastAPI proxies /v1/* to vLLM (so clients can use OpenAI SDK / LangChain) - Gradio chat UI at "/" - A10G-24GB friendly defaults (Qwen 2.5 14B AWQ, 8k ctx) """ import os, time, threading, subprocess, requests, json from fastapi import FastAPI, Request, Response from fastapi.responses import JSONResponse import gradio as gr # -------- Config (env overridable) -------- MODEL_ID = os.environ.get("MODEL_ID", "Qwen/Qwen2.5-14B-Instruct-AWQ") API_PORT = int(os.environ.get("API_PORT", "8000")) # vLLM internal port SYSTEM_PROMPT = os.environ.get( "SYSTEM_PROMPT", "You are ExCom AI, a professional assistant that answers precisely and clearly." ) # Memory-friendly defaults for A10G (24 GB) VLLM_ARGS = [ "python3", "-m", "vllm.entrypoints.openai.api_server", "--model", MODEL_ID, "--host", "0.0.0.0", "--port", str(API_PORT), "--served-model-name", "excom-ai", "--max-model-len", "8192", "--gpu-memory-utilization", "0.90", "--trust-remote-code", ] if "AWQ" in MODEL_ID.upper(): # faster AWQ kernel if available VLLM_ARGS += ["--quantization", "awq_marlin"] # -------- vLLM launcher (non-blocking) -------- def launch_vllm(): print(f"[vLLM] Launching with MODEL_ID={MODEL_ID}") subprocess.Popen(VLLM_ARGS) def wait_vllm_ready(timeout=900, interval=3): base = f"http://127.0.0.1:{API_PORT}/v1/models" start = time.time() while time.time() - start < timeout: try: r = requests.get(base, timeout=3) if r.ok: print("[vLLM] Ready.") return True except Exception: pass time.sleep(interval) print("[vLLM] Failed to become ready in time.") return False # Start vLLM in background at process start threading.Thread(target=launch_vllm, daemon=True).start() threading.Thread(target=wait_vllm_ready, daemon=True).start() # -------- FastAPI app -------- app = FastAPI() @app.get("/health") def health(): try: r = requests.get(f"http://127.0.0.1:{API_PORT}/v1/models", timeout=2) return {"upstream_ok": r.ok} except Exception as e: return {"upstream_ok": False, "error": str(e)} # Minimal proxy for OpenAI-compatible routes @app.get("/v1/models") def proxy_models(): r = requests.get(f"http://127.0.0.1:{API_PORT}/v1/models", timeout=20) return Response(content=r.content, media_type=r.headers.get("content-type", "application/json"), status_code=r.status_code) @app.post("/v1/chat/completions") async def proxy_chat(request: Request): body = await request.body() r = requests.post(f"http://127.0.0.1:{API_PORT}/v1/chat/completions", data=body, headers={"Content-Type": "application/json"}, timeout=600) return Response(content=r.content, media_type=r.headers.get("content-type", "application/json"), status_code=r.status_code) # -------- Gradio UI (messages mode) -------- _ready_flag = {"ok": False} def ensure_ready(): if _ready_flag["ok"]: return True if wait_vllm_ready(timeout=60): _ready_flag["ok"] = True return True return False def chat_fn(user_message: str, history: list[dict]): if not ensure_ready(): return "⏳ Model is loading… please retry in a few seconds." messages = [{"role": "system", "content": SYSTEM_PROMPT}] + history + [ {"role": "user", "content": user_message} ] payload = {"model": "excom-ai", "messages": messages, "temperature": 0.4} r = requests.post(f"http://127.0.0.1:{API_PORT}/v1/chat/completions", json=payload, timeout=600) r.raise_for_status() return r.json()["choices"][0]["message"]["content"] demo = gr.ChatInterface( fn=chat_fn, title="ExCom AI — Qwen 2.5 14B AWQ (vLLM)", type="messages", examples=["Hello", "What can you do?", "Explain ExCom AI in one line."], ) # mount Gradio at root app = gr.mount_gradio_app(app, demo, path="/")