Paula Leonova
commited on
Commit
·
0945896
1
Parent(s):
dae3587
Update description and add more spinners
Browse files
app.py
CHANGED
|
@@ -15,9 +15,9 @@ ex_long_text = example_long_text_load()
|
|
| 15 |
|
| 16 |
# if __name__ == '__main__':
|
| 17 |
st.header("Summzarization & Multi-label Classification for Long Text")
|
| 18 |
-
st.write("This app summarizes and then classifies your long text with multiple labels
|
| 19 |
-
st.write("
|
| 20 |
-
st.write("
|
| 21 |
|
| 22 |
with st.form(key='my_form'):
|
| 23 |
example_text = ex_long_text #ex_text
|
|
@@ -31,11 +31,11 @@ with st.form(key='my_form'):
|
|
| 31 |
labels = list(set([x.strip() for x in labels.strip().split(',') if len(x.strip()) > 0]))
|
| 32 |
submit_button = st.form_submit_button(label='Submit')
|
| 33 |
|
|
|
|
| 34 |
with st.spinner('Loading pretrained models...'):
|
| 35 |
summarizer = load_summary_model()
|
| 36 |
classifier = load_model()
|
| 37 |
-
st.success('
|
| 38 |
-
|
| 39 |
|
| 40 |
if submit_button:
|
| 41 |
if len(labels) == 0:
|
|
@@ -65,27 +65,29 @@ if submit_button:
|
|
| 65 |
# final_summary = summarizer_gen(summarizer, sequence=text_input, maximum_tokens = 30, minimum_tokens = 100)
|
| 66 |
st.markdown("### Combined Summary")
|
| 67 |
st.markdown(final_summary)
|
| 68 |
-
|
| 69 |
-
topics, scores = classifier_zero(classifier, sequence=final_summary, labels=labels, multi_class=True)
|
| 70 |
-
# st.markdown("### Top Label Predictions: Combined Summary")
|
| 71 |
-
# plot_result(topics[::-1][:], scores[::-1][:])
|
| 72 |
-
# st.markdown("### Download Data")
|
| 73 |
-
data = pd.DataFrame({'label': topics, 'scores_from_summary': scores})
|
| 74 |
-
# st.dataframe(data)
|
| 75 |
-
# coded_data = base64.b64encode(data.to_csv(index = False). encode ()).decode()
|
| 76 |
-
# st.markdown(
|
| 77 |
-
# f'<a href="data:file/csv;base64, {coded_data}" download = "data.csv">Download Data</a>',
|
| 78 |
-
# unsafe_allow_html = True
|
| 79 |
-
# )
|
| 80 |
-
|
| 81 |
-
st.markdown("### Top Label Predictions: Summary & Full Text")
|
| 82 |
-
topics_ex_text, scores_ex_text = classifier_zero(classifier, sequence=example_text, labels=labels, multi_class=True)
|
| 83 |
-
plot_dual_bar_chart(topics, scores, topics_ex_text, scores_ex_text)
|
| 84 |
-
|
| 85 |
-
data_ex_text = pd.DataFrame({'label': topics_ex_text, 'scores_from_full_text': scores_ex_text})
|
| 86 |
-
data2 = pd.merge(data, data_ex_text, on = ['label'])
|
| 87 |
-
st.markdown("### Data Table")
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
coded_data = base64.b64encode(data2.to_csv(index = False). encode ()).decode()
|
| 90 |
st.markdown(
|
| 91 |
f'<a href="data:file/csv;base64, {coded_data}" download = "data.csv">Click here to download the data</a>',
|
|
|
|
| 15 |
|
| 16 |
# if __name__ == '__main__':
|
| 17 |
st.header("Summzarization & Multi-label Classification for Long Text")
|
| 18 |
+
st.write("This app summarizes and then classifies your long text with multiple labels.")
|
| 19 |
+
st.write("__Inputs__: User enters their own custom text and labels.")
|
| 20 |
+
st.write("__Outputs__: A summary of the text, label likelihood percentages and a downloadable csv of the results.")
|
| 21 |
|
| 22 |
with st.form(key='my_form'):
|
| 23 |
example_text = ex_long_text #ex_text
|
|
|
|
| 31 |
labels = list(set([x.strip() for x in labels.strip().split(',') if len(x.strip()) > 0]))
|
| 32 |
submit_button = st.form_submit_button(label='Submit')
|
| 33 |
|
| 34 |
+
|
| 35 |
with st.spinner('Loading pretrained models...'):
|
| 36 |
summarizer = load_summary_model()
|
| 37 |
classifier = load_model()
|
| 38 |
+
st.success('Ready for inference...')
|
|
|
|
| 39 |
|
| 40 |
if submit_button:
|
| 41 |
if len(labels) == 0:
|
|
|
|
| 65 |
# final_summary = summarizer_gen(summarizer, sequence=text_input, maximum_tokens = 30, minimum_tokens = 100)
|
| 66 |
st.markdown("### Combined Summary")
|
| 67 |
st.markdown(final_summary)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
with st.spinner('Matching labels...'):
|
| 70 |
+
topics, scores = classifier_zero(classifier, sequence=final_summary, labels=labels, multi_class=True)
|
| 71 |
+
# st.markdown("### Top Label Predictions: Combined Summary")
|
| 72 |
+
# plot_result(topics[::-1][:], scores[::-1][:])
|
| 73 |
+
# st.markdown("### Download Data")
|
| 74 |
+
data = pd.DataFrame({'label': topics, 'scores_from_summary': scores})
|
| 75 |
+
# st.dataframe(data)
|
| 76 |
+
# coded_data = base64.b64encode(data.to_csv(index = False). encode ()).decode()
|
| 77 |
+
# st.markdown(
|
| 78 |
+
# f'<a href="data:file/csv;base64, {coded_data}" download = "data.csv">Download Data</a>',
|
| 79 |
+
# unsafe_allow_html = True
|
| 80 |
+
# )
|
| 81 |
+
|
| 82 |
+
st.markdown("### Top Label Predictions: Summary & Full Text")
|
| 83 |
+
topics_ex_text, scores_ex_text = classifier_zero(classifier, sequence=example_text, labels=labels, multi_class=True)
|
| 84 |
+
plot_dual_bar_chart(topics, scores, topics_ex_text, scores_ex_text)
|
| 85 |
+
|
| 86 |
+
data_ex_text = pd.DataFrame({'label': topics_ex_text, 'scores_from_full_text': scores_ex_text})
|
| 87 |
+
data2 = pd.merge(data, data_ex_text, on = ['label'])
|
| 88 |
+
st.markdown("### Data Table")
|
| 89 |
+
st.success('Almost done, see download link below.')
|
| 90 |
+
|
| 91 |
coded_data = base64.b64encode(data2.to_csv(index = False). encode ()).decode()
|
| 92 |
st.markdown(
|
| 93 |
f'<a href="data:file/csv;base64, {coded_data}" download = "data.csv">Click here to download the data</a>',
|