import gradio as gr
headers = [
    "Rank",
    "Model",
    "Average",
    "STS12",
    "STS13",
    "STS14",
    "STS15",
    "STS16",
    "SICK-E",
    "SICK-F",
    "STS-B",
    "STS12",
    "STS13",
    "STS14",
    "STS15",
    "STS16",
    "SICK-R",
    "STS-B",
    "STS12",
]
list = [
    'multilingual-e5-large-instruct',
    'SONAR',
    'LaBSE',
    'multilingual-e5-large',
    'e5-mistral-7b-instruct',
    'multilingual-e5-base',
    'LASER2',
    'multilingual-e5-small',
    'paraphrase-multilingual-mpnet-base-v2',
    'paraphrase-multilingual-MiniLM-L12-v2',
    'udever-bloom-7b1',
    'udever-bloom-3b',
    'sgpt-bloom-7b1-msmarco',
    'udever-bloom-1b1',
    'udever-bloom-560m',
    'sentence-t5-xl',
    'gtr-t5-xl',
    'winberta-base',
    'sentence-t5-large',
    'GIST-Embedding-v0',
    'komninos',
    'sbert-chinese-general-v1',
    'SGPT-125M-weightedmean-nli-bitfit',
    'SGPT-5.8B-weightedmean-nli-bitfit',
    'jina-embeddings-v2-base-de',
    'glove.6B.300d',
    'bi-cse',
]
def make_long_table():
    new_list = []
    for i in enumerate(list):
        new_list.append([i[0], i[1]] + [i[0]] * 16)
    return {"headers": headers, "data": new_list}
with gr.Blocks() as demo:
    gr.Dataframe(
        value=make_long_table(),
        datatype=["number", "html"] + ["number"] * 16,
    )
if __name__ == "__main__":
    demo.launch()