Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import pandas as pd | |
| from pathlib import Path | |
| abs_path = Path(__file__).parent.absolute() | |
| df = pd.read_json(str(abs_path / "assets/leaderboard_data.json")) | |
| invisible_df = df.copy() | |
| COLS = [ | |
| "T", | |
| "Model", | |
| "Average ⬆️", | |
| "ARC", | |
| "HellaSwag", | |
| "MMLU", | |
| "TruthfulQA", | |
| "Winogrande", | |
| "GSM8K", | |
| "Type", | |
| "Architecture", | |
| "Precision", | |
| "Merged", | |
| "Hub License", | |
| "#Params (B)", | |
| "Hub ❤️", | |
| "Model sha", | |
| "model_name_for_query", | |
| ] | |
| ON_LOAD_COLS = [ | |
| "T", | |
| "Model", | |
| "Average ⬆️", | |
| "ARC", | |
| "HellaSwag", | |
| "MMLU", | |
| "TruthfulQA", | |
| "Winogrande", | |
| "GSM8K", | |
| "model_name_for_query", | |
| ] | |
| TYPES = [ | |
| "str", | |
| "markdown", | |
| "number", | |
| "number", | |
| "number", | |
| "number", | |
| "number", | |
| "number", | |
| "number", | |
| "str", | |
| "str", | |
| "str", | |
| "str", | |
| "bool", | |
| "str", | |
| "number", | |
| "number", | |
| "bool", | |
| "str", | |
| "bool", | |
| "bool", | |
| "str", | |
| ] | |
| NUMERIC_INTERVALS = { | |
| "?": pd.Interval(-1, 0, closed="right"), | |
| "~1.5": pd.Interval(0, 2, closed="right"), | |
| "~3": pd.Interval(2, 4, closed="right"), | |
| "~7": pd.Interval(4, 9, closed="right"), | |
| "~13": pd.Interval(9, 20, closed="right"), | |
| "~35": pd.Interval(20, 45, closed="right"), | |
| "~60": pd.Interval(45, 70, closed="right"), | |
| "70+": pd.Interval(70, 10000, closed="right"), | |
| } | |
| MODEL_TYPE = [str(s) for s in df["T"].unique()] | |
| Precision = [str(s) for s in df["Precision"].unique()] | |
| # Searching and filtering | |
| def update_table( | |
| hidden_df: pd.DataFrame, | |
| columns: list, | |
| type_query: list, | |
| precision_query: str, | |
| size_query: list, | |
| query: str, | |
| ): | |
| filtered_df = filter_models(hidden_df, type_query, size_query, precision_query) # type: ignore | |
| filtered_df = filter_queries(query, filtered_df) | |
| df = select_columns(filtered_df, columns) | |
| return df | |
| def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
| return df[(df["model_name_for_query"].str.contains(query, case=False))] # type: ignore | |
| def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
| # We use COLS to maintain sorting | |
| filtered_df = df[[c for c in COLS if c in df.columns and c in columns]] | |
| return filtered_df # type: ignore | |
| def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: | |
| final_df = [] | |
| if query != "": | |
| queries = [q.strip() for q in query.split(";")] | |
| for _q in queries: | |
| _q = _q.strip() | |
| if _q != "": | |
| temp_filtered_df = search_table(filtered_df, _q) | |
| if len(temp_filtered_df) > 0: | |
| final_df.append(temp_filtered_df) | |
| if len(final_df) > 0: | |
| filtered_df = pd.concat(final_df) | |
| filtered_df = filtered_df.drop_duplicates( # type: ignore | |
| subset=["Model", "Precision", "Model sha"] | |
| ) | |
| return filtered_df | |
| def filter_models( | |
| df: pd.DataFrame, | |
| type_query: list, | |
| size_query: list, | |
| precision_query: list, | |
| ) -> pd.DataFrame: | |
| # Show all models | |
| filtered_df = df | |
| type_emoji = [t[0] for t in type_query] | |
| filtered_df = filtered_df.loc[df["T"].isin(type_emoji)] | |
| filtered_df = filtered_df.loc[df["Precision"].isin(precision_query + ["None"])] | |
| numeric_interval = pd.IntervalIndex( | |
| sorted([NUMERIC_INTERVALS[s] for s in size_query]) # type: ignore | |
| ) | |
| params_column = pd.to_numeric(df["#Params (B)"], errors="coerce") | |
| mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) # type: ignore | |
| filtered_df = filtered_df.loc[mask] | |
| return filtered_df | |
| demo = gr.Blocks(css=str(abs_path / "assets/leaderboard_data.json")) | |
| with demo: | |
| gr.Markdown("""Test Space of the LLM Leaderboard""", elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| search_bar = gr.Textbox( | |
| placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", | |
| show_label=False, | |
| elem_id="search-bar", | |
| ) | |
| with gr.Row(): | |
| shown_columns = gr.CheckboxGroup( | |
| choices=COLS, | |
| value=ON_LOAD_COLS, | |
| label="Select columns to show", | |
| elem_id="column-select", | |
| interactive=True, | |
| ) | |
| with gr.Column(min_width=320): | |
| filter_columns_type = gr.CheckboxGroup( | |
| label="Model types", | |
| choices=MODEL_TYPE, | |
| value=MODEL_TYPE, | |
| interactive=True, | |
| elem_id="filter-columns-type", | |
| ) | |
| filter_columns_precision = gr.CheckboxGroup( | |
| label="Precision", | |
| choices=Precision, | |
| value=Precision, | |
| interactive=True, | |
| elem_id="filter-columns-precision", | |
| ) | |
| filter_columns_size = gr.CheckboxGroup( | |
| label="Model sizes (in billions of parameters)", | |
| choices=list(NUMERIC_INTERVALS.keys()), | |
| value=list(NUMERIC_INTERVALS.keys()), | |
| interactive=True, | |
| elem_id="filter-columns-size", | |
| ) | |
| leaderboard_table = gr.components.Dataframe( | |
| value=df[ON_LOAD_COLS], # type: ignore | |
| headers=ON_LOAD_COLS, | |
| datatype=TYPES, | |
| elem_id="leaderboard-table", | |
| interactive=False, | |
| visible=True, | |
| column_widths=["2%", "33%"], | |
| ) | |
| # Dummy leaderboard for handling the case when the user uses backspace key | |
| hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
| value=invisible_df[COLS], # type: ignore | |
| headers=COLS, | |
| datatype=TYPES, | |
| visible=False, | |
| ) | |
| search_bar.submit( | |
| update_table, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| filter_columns_type, | |
| filter_columns_precision, | |
| filter_columns_size, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| ) | |
| for selector in [ | |
| shown_columns, | |
| filter_columns_type, | |
| filter_columns_precision, | |
| filter_columns_size, | |
| ]: | |
| selector.change( | |
| update_table, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| filter_columns_type, | |
| filter_columns_precision, | |
| filter_columns_size, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| queue=True, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(default_concurrency_limit=40).launch() | |