Spaces:
Runtime error
Runtime error
⚡️ adjust params for csearch
Browse filesSigned-off-by: peter szemraj <peterszemraj@gmail.com>
app.py
CHANGED
|
@@ -20,31 +20,28 @@ def generate_text(
|
|
| 20 |
gen_length=64,
|
| 21 |
penalty_alpha=0.6,
|
| 22 |
top_k=6,
|
| 23 |
-
no_repeat_ngram_size=2,
|
| 24 |
length_penalty=1.0,
|
| 25 |
# perma params (not set by user)
|
| 26 |
abs_max_length=512,
|
| 27 |
verbose=False,
|
| 28 |
):
|
| 29 |
"""
|
| 30 |
-
generate_text - generate text
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
Returns:
|
| 40 |
-
str: the generated text
|
| 41 |
"""
|
| 42 |
global generator
|
| 43 |
if verbose:
|
| 44 |
logging.info(f"Generating text from prompt:\n\n{prompt}")
|
| 45 |
logging.info(
|
| 46 |
pp.pformat(
|
| 47 |
-
f"params:\tmax_length={gen_length}, penalty_alpha={penalty_alpha}, top_k={top_k},
|
| 48 |
)
|
| 49 |
)
|
| 50 |
st = time.perf_counter()
|
|
@@ -59,7 +56,6 @@ def generate_text(
|
|
| 59 |
min_length=input_len + 4,
|
| 60 |
penalty_alpha=penalty_alpha,
|
| 61 |
top_k=top_k,
|
| 62 |
-
no_repeat_ngram_size=no_repeat_ngram_size,
|
| 63 |
length_penalty=length_penalty,
|
| 64 |
) # generate
|
| 65 |
response = result[0]["generated_text"]
|
|
@@ -107,15 +103,14 @@ def get_parser():
|
|
| 107 |
default="postbot/distilgpt2-emailgen-V2",
|
| 108 |
help="Pass an different huggingface model tag to use a custom model",
|
| 109 |
)
|
| 110 |
-
|
| 111 |
parser.add_argument(
|
| 112 |
-
"-
|
| 113 |
-
"--
|
| 114 |
required=False,
|
| 115 |
-
|
| 116 |
-
|
|
|
|
| 117 |
)
|
| 118 |
-
|
| 119 |
parser.add_argument(
|
| 120 |
"-a",
|
| 121 |
"--penalty_alpha",
|
|
@@ -131,6 +126,13 @@ def get_parser():
|
|
| 131 |
default=6,
|
| 132 |
help="The top k for the text generation pipeline (contrastive search) - default 6",
|
| 133 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
return parser
|
| 135 |
|
| 136 |
|
|
@@ -192,7 +194,7 @@ if __name__ == "__main__":
|
|
| 192 |
)
|
| 193 |
num_gen_tokens = gr.Slider(
|
| 194 |
label="Generation Tokens",
|
| 195 |
-
value=
|
| 196 |
maximum=96,
|
| 197 |
minimum=16,
|
| 198 |
step=8,
|
|
@@ -217,7 +219,7 @@ if __name__ == "__main__":
|
|
| 217 |
gr.Markdown("---")
|
| 218 |
gr.Markdown("## Advanced Options")
|
| 219 |
gr.Markdown(
|
| 220 |
-
"This demo generates text via the new [
|
| 221 |
)
|
| 222 |
with gr.Row():
|
| 223 |
model_name = gr.Dropdown(
|
|
@@ -229,11 +231,6 @@ if __name__ == "__main__":
|
|
| 229 |
"Load Model",
|
| 230 |
variant="secondary",
|
| 231 |
)
|
| 232 |
-
no_repeat_ngram_size = gr.Radio(
|
| 233 |
-
choices=[1, 2, 3, 4],
|
| 234 |
-
label="no repeat ngram size",
|
| 235 |
-
value=3,
|
| 236 |
-
)
|
| 237 |
with gr.Row():
|
| 238 |
contrastive_top_k = gr.Radio(
|
| 239 |
choices=[2, 4, 6, 8],
|
|
@@ -280,7 +277,6 @@ if __name__ == "__main__":
|
|
| 280 |
num_gen_tokens,
|
| 281 |
penalty_alpha,
|
| 282 |
contrastive_top_k,
|
| 283 |
-
no_repeat_ngram_size,
|
| 284 |
length_penalty,
|
| 285 |
],
|
| 286 |
outputs=[email_mailto_button, generated_email],
|
|
|
|
| 20 |
gen_length=64,
|
| 21 |
penalty_alpha=0.6,
|
| 22 |
top_k=6,
|
|
|
|
| 23 |
length_penalty=1.0,
|
| 24 |
# perma params (not set by user)
|
| 25 |
abs_max_length=512,
|
| 26 |
verbose=False,
|
| 27 |
):
|
| 28 |
"""
|
| 29 |
+
generate_text - generate text using the text generation pipeline
|
| 30 |
+
|
| 31 |
+
:param str prompt: the prompt to use for the text generation pipeline
|
| 32 |
+
:param int gen_length: the number of tokens to generate
|
| 33 |
+
:param float penalty_alpha: the penalty alpha for the text generation pipeline (contrastive search)
|
| 34 |
+
:param int top_k: the top k for the text generation pipeline (contrastive search)
|
| 35 |
+
:param int abs_max_length: the absolute max length for the text generation pipeline
|
| 36 |
+
:param bool verbose: verbose output
|
| 37 |
+
:return str: the generated text
|
|
|
|
|
|
|
| 38 |
"""
|
| 39 |
global generator
|
| 40 |
if verbose:
|
| 41 |
logging.info(f"Generating text from prompt:\n\n{prompt}")
|
| 42 |
logging.info(
|
| 43 |
pp.pformat(
|
| 44 |
+
f"params:\tmax_length={gen_length}, penalty_alpha={penalty_alpha}, top_k={top_k}, length_penalty={length_penalty}"
|
| 45 |
)
|
| 46 |
)
|
| 47 |
st = time.perf_counter()
|
|
|
|
| 56 |
min_length=input_len + 4,
|
| 57 |
penalty_alpha=penalty_alpha,
|
| 58 |
top_k=top_k,
|
|
|
|
| 59 |
length_penalty=length_penalty,
|
| 60 |
) # generate
|
| 61 |
response = result[0]["generated_text"]
|
|
|
|
| 103 |
default="postbot/distilgpt2-emailgen-V2",
|
| 104 |
help="Pass an different huggingface model tag to use a custom model",
|
| 105 |
)
|
|
|
|
| 106 |
parser.add_argument(
|
| 107 |
+
"-l",
|
| 108 |
+
"--max_length",
|
| 109 |
required=False,
|
| 110 |
+
type=int,
|
| 111 |
+
default=64,
|
| 112 |
+
help="default max length of the generated text",
|
| 113 |
)
|
|
|
|
| 114 |
parser.add_argument(
|
| 115 |
"-a",
|
| 116 |
"--penalty_alpha",
|
|
|
|
| 126 |
default=6,
|
| 127 |
help="The top k for the text generation pipeline (contrastive search) - default 6",
|
| 128 |
)
|
| 129 |
+
parser.add_argument(
|
| 130 |
+
"-v",
|
| 131 |
+
"--verbose",
|
| 132 |
+
required=False,
|
| 133 |
+
action="store_true",
|
| 134 |
+
help="Verbose output",
|
| 135 |
+
)
|
| 136 |
return parser
|
| 137 |
|
| 138 |
|
|
|
|
| 194 |
)
|
| 195 |
num_gen_tokens = gr.Slider(
|
| 196 |
label="Generation Tokens",
|
| 197 |
+
value=40,
|
| 198 |
maximum=96,
|
| 199 |
minimum=16,
|
| 200 |
step=8,
|
|
|
|
| 219 |
gr.Markdown("---")
|
| 220 |
gr.Markdown("## Advanced Options")
|
| 221 |
gr.Markdown(
|
| 222 |
+
"This demo generates text via the new [contrastive search](https://huggingface.co/blog/introducing-csearch). See the csearch blog post for details on the parameters or [here](https://huggingface.co/blog/how-to-generate), for general decoding."
|
| 223 |
)
|
| 224 |
with gr.Row():
|
| 225 |
model_name = gr.Dropdown(
|
|
|
|
| 231 |
"Load Model",
|
| 232 |
variant="secondary",
|
| 233 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
with gr.Row():
|
| 235 |
contrastive_top_k = gr.Radio(
|
| 236 |
choices=[2, 4, 6, 8],
|
|
|
|
| 277 |
num_gen_tokens,
|
| 278 |
penalty_alpha,
|
| 279 |
contrastive_top_k,
|
|
|
|
| 280 |
length_penalty,
|
| 281 |
],
|
| 282 |
outputs=[email_mailto_button, generated_email],
|