test_discut / eval.py
poyum's picture
fix config ?
a4ce92f
#!/usr/bin/python
# -*- coding: utf-8 -*-
import os, sys
import numpy as np
import transformers
import utils
import reading
SUBTOKEN_START = '##'
'''
TODOs:
- for now, if the dataset is cached, can t use word ids and the predictions
written are not based on original eval file, thus not exactly same number
of tokens (ignore contractions) --> doesn t work in disrpt eval script
Change in newest version of transformers:
from seqeval.metrics import accuracy_score
from seqeval.metrics import classification_report
from seqeval.metrics import f1_score
'''
def simple_eval( dataset_eval, model_checkpoint, tokenizer, output_path,
config, trace=False ):
'''
Run the pre-trained model on the (dev) dataset to get predictions,
then write the predictions in an output file.
Parameters:
-----------
datasets: dict of DatasetDisc
The datasets read
model_checkpoint: str
path to the saved model
tokenizer: Tokenizer
tokenizer of the saved model (TODO: retrieve from model? or should be removed?)
output_path: str
path to the output directory where prediction files will be written
data_collator: DataCollator
(TODO: retrieve from model?)
'''
# Retrieve predictions (list of list of 0 and 1)
print("\n-- PREDICT on:", dataset_eval.annotations_file )
model_checkpoint = os.path.normpath(model_checkpoint)
print("model_checkpoint", model_checkpoint)
preds_from_model, label_ids, metrics = retrieve_predictions( model_checkpoint,
dataset_eval, output_path, tokenizer, config )
print("preds_from_model.shape", preds_from_model.shape)
print("label_ids.shape", label_ids.shape)
# - Compute metrics
print("\n-- COMPUTE METRICS" )
compute_metrics = utils.prepare_compute_metrics( dataset_eval.LABEL_NAMES_BIO )
metrics=compute_metrics([preds_from_model, label_ids])
max_preds_from_model = np.argmax(preds_from_model, axis=-1)
# - Write predictions:
pred_file = os.path.join( output_path, dataset_eval.basename+'.preds' )
print("\n-- WRITE PREDS in:", pred_file )
pred_file_success = True
try:
try:
# * retrieving the original words: will fail if cache not emptied
print( "Write predictions based on words")
predictions = align_tokens_labels_from_wordids( max_preds_from_model, dataset_eval,
tokenizer)
write_pred_file( dataset_eval.annotations_file, pred_file, predictions, trace=trace )
except IndexError:
# if error, we print the predictions with tokens, trying to merge subtokens
# based on SUBTOKEN_START and labels at -100
print( "Write predictions based on model tokenisation" )
aligned_tokens, aligned_golds, aligned_preds = align_tokens_labels_from_subtokens(
max_preds_from_model, dataset_eval, tokenizer, pred_file, trace=trace )
write_pred_file_from_scratch( aligned_tokens, aligned_golds, aligned_preds,
pred_file, trace=trace )
except Exception as e:
print( "Problem when trying to write predictions in file", pred_file )
print( "Exception:", e )
print("we skip the prediction writing step")
pred_file_success=False
if pred_file_success:
print( "\n-- EVAL DISRPT script" )
clean_pred_path = pred_file.replace('.preds', '.cleaned.preds')
utils.clean_pred_file(pred_file, clean_pred_path)
utils.compute_metrics_dirspt( dataset_eval, clean_pred_path, task=config['task'] )
# except:
# print("Problem when trying to compute scores with DISRPT eval script")
return metrics
# - Test DISRPT eval script
# try:
def write_pred_file(annotations_file, pred_file, predictions, trace=False):
'''
Write a file containing the predictions based on the original annotation file.
It takes each line in the original evaluation file and append the prediction at
the end. Predictions and original tokens need to be perfectly aligned.
Parameters:
-----------
annotations_file: str | file path OR raw text
Path to the original evaluation file, or the text content itself
pred_file: str
Path to the output prediction file
predictions: list of str
Flat list of all predictions (DISRPT format) for all tokens in eval
'''
count_pred_B, count_gold_B = 0, 0
count_line_dash = 0
count_line_dot = 0
# --- Déterminer si annotations_file est un chemin ou du texte brut
if os.path.isfile(annotations_file):
with open(annotations_file, 'r', encoding='utf-8') as fin:
mylines = fin.readlines()
else:
# Considérer que c’est une string brute
mylines = annotations_file.strip().splitlines()
os.makedirs(os.path.dirname(pred_file), exist_ok=True)
with open(pred_file, 'w', encoding='utf-8') as fout:
count = 0
if trace:
print("len(predictions)", len(predictions))
for l in mylines:
l = l.strip()
if l.startswith("#"): # Keep metadata
fout.write(l + '\n')
elif l == '' or l == '\n': # keep line break
fout.write('\n')
elif '-' in l.split('\t')[0]: # Keep lines for contractions but no label
if trace:
print("WARNING: line with - in token, no label will be added")
count_line_dash += 1
fout.write(l + '\t' + '_' + '\n')
# strange case in GUM
elif '.' in l.split('\t')[0]: # Keep lines no label
count_line_dot += 1
if trace:
print("WARNING: line with . in token, no label will be added")
fout.write(l + '\t' + '_' + '\n')
else:
if 'B' in predictions[count]:
count_pred_B += 1
if 'Seg=B-seg' in l or 'Conn=B-conn' in l:
count_gold_B += 1
fout.write(l + '\t' + predictions[count] + '\n')
count += 1
print("Count the number of predictions corresponding to a B", count_pred_B, "vs Gold B", count_gold_B)
print("Count the number of lines with - in token", count_line_dash)
print("Count the number of lines with . in token", count_line_dot)
def write_pred_file_from_scratch( aligned_tokens, aligned_golds, aligned_preds, pred_file, trace=False ):
'''
Write a prediction file based on a alignment between tokenisation and predictions.
Since we are not sur that we retrieved the exact alignment, the writing here is not based
on the original annotation file, but we use a similar format:
# Sent ID
tok_ID token gold_label pred_label
The use of the DISRPT script will show whther the alignment worked or not ...
Parameters:
----------
aligned_XX: list of list of str
The tokens / preds / golds for each sentence
'''
count_pred_B, count_gold_B = 0, 0
with open( pred_file, 'w' ) as fout:
if trace:
print( 'len tokens', len(aligned_tokens))
print("len(predictions)", len(aligned_preds))
print( 'len(golds)', len(aligned_preds))
for s, tok_sent in enumerate( aligned_tokens ):
fout.write( "# sent_id = "+str(s)+"\n" )
for i, tok in enumerate( tok_sent ):
g = aligned_golds[s][i]
p = aligned_preds[s][i]
fout.write( '\t'.join([str(i), tok, g, p])+'\n' )
if 'B' in p:
count_pred_B += 1
if 'Seg=B-seg' in g or 'Conn=B-conn' in g:
count_gold_B += 1
fout.write( "\n" )
print("Count the number of predictions corresponding to a B", count_pred_B, "vs Gold B", count_gold_B)
def align_tokens_labels_from_wordids( preds_from_model, dataset_eval, tokenizer, trace=False ):
'''
Write predictions for segmentation or connective tasks in an output files.
The output is the same as the input gold file, with an additional column
corresponding to the predicted label.
Easiest way (?): use word_ids information to merge the words that been split et
retrieve the original tokens from the input .tok / .conllu files and run
evaluation --> but not kept in the cached datasets
Parameters:
-----------
preds_from_model: list of int
The predicted labels (numeric ids)
dev: DatasetDisc
Dataset for evalusation
pred_file: str
Path to the file where predictions will be written
Return:
-------
predictions: list of String
The predicted labels (DISRPT format) for each original input word
'''
word_ids = dataset_eval.all_word_ids
id2label = dataset_eval.id2label
predictions = []
for i in range( preds_from_model.shape[0] ):
sent_input_ids = dataset_eval.tokenized_datasets['input_ids'][i]
tokens = dataset_eval.dataset['tokens'][i]
sent_tokens = tokenizer.decode(sent_input_ids[1:-1])
aligned_preds = _merge_tokens_preds_sent( word_ids[i], preds_from_model[i], tokens )
if trace:
print( '\n', i, sent_tokens )
print( sent_input_ids )
print( preds_from_model[i])
print( ' '.join( tokens ) )
print( "aligned_preds", aligned_preds )
for k, tok in enumerate( tokens ):
# Ignorer les tokens spéciaux
if tok.startswith('[LANG=') or tok.startswith('[FRAME='):
if trace:
print(f"Skip special token: {tok}")
continue
label = aligned_preds[k]
predictions.append( id2label[label] )
return predictions
def _merge_tokens_preds_sent( word_ids, preds, tokens ):
'''
The tokenizer split the tokens into subtokens, with labels added on subwords.
For evaluation, we need to merge the subtokens, and keep only the labels on
the plain tokens.
The function takes the whole input_ids and predictions for one sentence and
return the merged version.
We also get rid of tokens and associated labels for [CLS] and [SEP] and don't
keep predictions for padding tokens.
TODO: here inspireed from the mthod to split the labels, but we can cut the
2 continue (kept for debug)
input_ids: list
list of ids of (sub)tokens as produced by the (BERT like) tokenizer
preds: list
the predictions of the model
'''
aligned_toks = []
count = 0
new_labels = []
current_word = None
for i, word_id in enumerate( word_ids ):
count += 1
if word_id != current_word:
# New word
current_word = word_id
if word_id is not None:
new_labels.append( preds[i] )
aligned_toks.append( tokens[word_id] )
elif word_id is None:
# Special token
continue
else:
# Same word as previous token
continue
if len(new_labels) != len(aligned_toks) or len(new_labels) != len(tokens):
print( "WARNING, something wrong, not the same nb of tokens and predictions")
print( len(new_labels), len(aligned_toks), len(tokens) )
return new_labels
def map_labels_list( list_labels, id2label ):
return [id2label[l] for l in list_labels]
def align_tokens_labels_from_subtokens( preds_from_model, dataset_eval, tokenizer, pred_file, trace=False ):
'''
Align tokens and labels (merging subtokens, assigning the right label)
based on the specific characters for starting a subtoken (e.g. ## for BERT)
and label -100 assigned to contractions of MWE (e.g. it's).
But not completely sure that we get the exact alignment with original words here.
'''
aligned_tokens, aligned_golds, aligned_preds = [], [], []
id2label = dataset_eval.id2label
tokenized_dataset = dataset_eval.tokenized_datasets
# print("\ndataset_eval.tokenized_datasets", dataset_eval.tokenized_datasets)
# print("preds_from_model.shape", preds_from_model.shape)
# For each sentence
with open(pred_file, 'w') as fout:
# Iterate on sentences
for i in range( preds_from_model.shape[0] ):
# fout.write( "new_sent_"+str(i)+'\n' )
sent_input_ids = dataset_eval.tokenized_datasets['input_ids'][i]
sent_gold_labels = tokenized_dataset['labels'][i]
sent_pred_labels = preds_from_model[i]
aligned_t, aligned_g, aligned_p = _retrieve_tokens_from_sent( sent_input_ids, sent_pred_labels,
sent_gold_labels, tokenizer, trace=trace )
aligned_tokens.append(aligned_t)
aligned_golds.append( map_labels_list(aligned_g, id2label) )
aligned_preds.append( map_labels_list(aligned_p, id2label) )
return aligned_tokens, aligned_golds, aligned_preds
def _retrieve_tokens_from_sent( sent_input_ids, preds_from_model, sent_gold_labels, tokenizer, trace=False ):
# tokenized_dataset = dataset.tokenized_datasets
cur_token, cur_pred, cur_gold = None, None, None
tokens, golds, preds = [], [], []
if trace:
print( '\n\nlen(sent_input_ids', len(sent_input_ids))
print( 'len(preds_from_model)', len(preds_from_model) ) #with padding
print( 'len(sent_gold_labels)', sent_gold_labels)
# Ignore first and last token / labels
for j, input_id in enumerate( sent_input_ids[1:-1] ):
gold_label = sent_gold_labels[j+1]
pred_label = preds_from_model[j+1]
subtoken = tokenizer.decode( input_id )
if trace:
print( subtoken, gold_label, pred_label )
# Deal with tokens split into subtokens, keep label of the first subtoken
if subtoken.startswith( SUBTOKEN_START ) or gold_label == -100:
if cur_token == None:
print( "WARNING: first subtoken without a token, probably a contraction or MWE")
cur_token=""
cur_token += subtoken
else:
if cur_token != None:
tokens.append( cur_token )
golds.append(cur_gold)
preds.append(cur_pred)
cur_token = subtoken
cur_pred = pred_label
cur_gold = gold_label
# add last one
tokens.append( cur_token )
golds.append(cur_gold)
preds.append(cur_pred)
if trace:
print( "\ntokens:", len(tokens), tokens )
print( "golds", len(golds), golds )
print( "preds", len(preds), preds )
for i, tok in enumerate(tokens):
print( tok, golds[i], preds[i])
return tokens, golds, preds
def retrieve_predictions(model_checkpoint, dataset_eval, output_path, tokenizer, config):
"""
Load the trainer in eval mode and compute predictions
on dataset_eval (peut être un dataset HuggingFace OU une liste de phrases)
"""
import os, transformers
model_path = model_checkpoint
if os.path.isfile(model_checkpoint):
print(f"[INFO] Le chemin du modèle pointe vers un fichier, utilisation du dossier parent: {os.path.dirname(model_checkpoint)}")
model_path = os.path.dirname(model_checkpoint)
config_file = os.path.join(model_path, "config.json")
# if not os.path.exists(config_file):
# raise FileNotFoundError(f"Aucun fichier config.json trouvé dans {model_path}.")
# Load model
model = transformers.AutoModelForTokenClassification.from_pretrained(model_path)
# Collator
data_collator = transformers.DataCollatorForTokenClassification(
tokenizer=tokenizer,
padding=config["tok_config"]["padding"]
)
compute_metrics = utils.prepare_compute_metrics(
getattr(dataset_eval, "LABEL_NAMES_BIO", None) or []
)
# Mode eval
model.eval()
test_args = transformers.TrainingArguments(
output_dir=output_path,
do_train=False,
do_predict=True,
dataloader_drop_last=False,
report_to=config.get("report_to", "none"),
)
trainer = transformers.Trainer(
model=model,
args=test_args,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
# Si dataset_eval est juste une liste de phrases → on fabrique un Dataset
from datasets import Dataset
if isinstance(dataset_eval, list):
dataset_eval = Dataset.from_dict({"text": dataset_eval})
def tokenize(batch):
return tokenizer(batch["text"], truncation=True, padding=True)
dataset_eval = dataset_eval.map(tokenize, batched=True)
predictions, label_ids, metrics = trainer.predict(dataset_eval)
else:
# - Make predictions on eval dataset
predictions, label_ids, metrics = trainer.predict(dataset_eval.tokenized_datasets)
return predictions, label_ids, metrics
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
if __name__=="__main__":
import argparse, os
import shutil
path = os.path.join(os.path.expanduser("~"), ".cache", "huggingface", "datasets")
if os.path.exists(path):
shutil.rmtree(path)
print(f"Le dossier '{path}' a été supprimé.")
else:
print(f"Le dossier '{path}' n'existe pas.")
parser = argparse.ArgumentParser(
description='DISCUT: Discourse segmentation and connective detection'
)
# EVAL file
parser.add_argument("-t", "--test",
help="Eval file. Default: data_test/eng.sample.rstdt/eng.sample.rstdt_dev.conllu",
default="data_test/eng.sample.rstdt/eng.sample.rstdt_dev.conllu")
# PRE FINE-TUNED MODEL
parser.add_argument("-m", "--model",
help="path to the directory where is the Model file.",
default=None)
# OUTPUT DIRECTORY
parser.add_argument("-o", "--output",
help="Directory where models and pred will be saved. Default: /home/cbraud/experiments/expe_discut_2025/",
default="./data/temp_expe/")
# CONFIG FILE FROM THE FINE TUNED MODEL
parser.add_argument("-c", "--config",
help="Config file. Default: ./config_seg.json",
default="./config_seg.json")
# TRACE / VERBOSITY
parser.add_argument( '-v', '--trace',
action='store_true',
default=False,
help="Whether to print full messages. If used, it will override the value in config file.")
# TODO Add an option for choosing the tool to split the sentences
args = parser.parse_args()
eval_path = args.test
output_path = args.output
if not os.path.isdir( output_path ):
os.makedirs(output_path, exist_ok=True )
config_file = args.config
model = args.model
trace = args.trace
print( '\n-[DISCUT]--PROGRAM (eval) ARGUMENTS')
print( '| Mode', 'eval' )
if not model:
sys.exit( "Please provide a path to a model for eval mode.")
print( '| Test_path:', eval_path )
print( "| Output_path:", output_path )
if model:
print( "| Model:", model )
print( '| Config:', config_file )
print( '\n-[DISCUT]--CONFIG INFO')
config = utils.read_config( config_file )
utils.print_config( config )
print( "\n-[DISCUT]--READING DATASET")
###
datasets = {}
datasets['dev'], tokenizer = reading.read_dataset( eval_path, output_path, config )
# model also in config[best_model_path]
metrics=simple_eval( datasets['dev'], model, tokenizer, output_path, config, trace=trace )
# # TODO clean, probably unused arguments here
# def simple_eval_deprecated( dataset_eval, model_checkpoint, tokenizer, output_path,
# config ):
# '''
# Run the pre-trained model on the (dev) dataset to get predictions,
# then write the predictions in an output file.
# Parameters:
# -----------
# datasets: dict of DatasetDisc
# The datasets read
# model_checkpoint: str
# path to the saved model
# tokenizer: Tokenizer
# tokenizer of the saved model (TODO: retrieve from model? or should be removed?)
# output_path: str
# path to the output directory where prediction files will be written
# data_collator: DataCollator
# (TODO: retrieve from model?)
# '''
# # tokenized_dataset = dataset_eval.tokenized_datasets
# dev_dataset = dataset_eval.dataset
# LABEL_NAMES = dataset_eval.LABEL_NAMES_BIO
# # TODO check if needed
# word_ids = dataset_eval.all_word_ids
# model = transformers.AutoModelForTokenClassification.from_pretrained(
# model_checkpoint
# )
# data_collator = transformers.DataCollatorForTokenClassification(
# tokenizer=tokenizer,
# padding=config["tok_config"]["padding"] )
# compute_metrics = utils.prepare_compute_metrics(LABEL_NAMES)
# # TODO is it useful to have both .eval() and test_args ?
# model.eval()
# test_args = transformers.TrainingArguments(
# output_dir = output_path,
# do_train = False,
# do_predict = True,
# #per_device_eval_batch_size = BATCH_SIZE,
# dataloader_drop_last = False
# )
# trainer = transformers.Trainer(
# model=model,
# args=test_args,
# data_collator=data_collator,
# compute_metrics=compute_metrics,
# )
# predictions, label_ids, metrics = trainer.predict(dataset_eval.tokenized_datasets)
# preds = np.argmax(predictions, axis=-1)
# compute_metrics([predictions, label_ids])
# # Try to write predictions: will fail if cache not emptied
# # because we need word_ids not saved in cache TODO check...
# pred_file = os.path.join( output_path, dataset_eval.basename+'.preds' )
# try:
# write_predictions_words( preds, dataset_eval.tokenized_datasets,
# tokenizer, pred_file, dataset_eval.id2label,
# word_ids, dev_dataset, dataset_eval )
# except IndexError:
# # if error, we print the predictions with tokens as is
# write_predictions_subtokens( preds, dataset_eval.tokenized_datasets,
# tokenizer, pred_file, dataset_eval.id2label )
# # Test DISRPT eval script
# print( "\nPerformance computed using disrpt eval script on", dataset_eval.annotations_file,
# pred_file )
# if config['task'] == 'seg':
# my_eval = disrpt_eval_2025.SegmentationEvaluation("temp_test_disrpt_eval_seg",
# dataset_eval.annotations_file,
# pred_file )
# elif config['task'] == 'conn':
# my_eval = disrpt_eval_2025.ConnectivesEvaluation("temp_test_disrpt_eval_conn",
# dataset_eval.annotations_file,
# pred_file )
# else:
# raise NotImplementedError
# my_eval.compute_scores()
# my_eval.print_results()
# # TODO: dd????
# # TODO : only for SEG/CONN --> to rename (and make a generic function)
# def write_predictions_words_deprecated( preds, dev, tokenizer, pred_file, id2label, word_ids,
# dev_dataset, dd, trace=False ):
# '''
# Write predictions for segmentation or connective tasks in an output files.
# The output is the same as the input gold file, with an additional column
# corresponding to the predicted label.
# ?? We need the word_ids information to merge the words that been split et
# retrieve the original tokens from the input .tok / .conllu files and run
# evaluation.
# Parameters:
# -----------
# preds: list of int
# The predicted labels (numeric ids)
# dev: Dataset
# tokenized_dev
# pred_file: str
# Path to the file where predictions will be written
# id2label: dict
# Convert from ids to labels
# word_ids: list?
# Word ids, None for task rel
# dev_dataset : Dataset
# Dataset for the dev set
# dd : str?
# dset
# '''
# predictions = []
# for i in range( preds.shape[0] ):
# sent_input_ids = dev['input_ids'][i]
# tokens = dev_dataset['tokens'][i]
# # sentence text
# sent_tokens = tokenizer.decode(sent_input_ids[1:-1])
# # list of decoded subtokens
# #sub_tokens = [tokenizer.decode(tok_id) for tok_id in sent_input_ids]
# # Merge subtokens and retrieve corresp. pred labels
# # i.e. we ignore: CLS, SEP, PAD and labels on ##subtoks
# aligned_preds = merge_tokens_preds_sent( word_ids[i], preds[i], tokens )
# if trace:
# print( '\n', i, sent_tokens )
# print( sent_input_ids )
# print( preds[i])
# print( ' '.join( tokens ) )
# print( "aligned_preds", aligned_preds )
# # sentence id, but TODO: retrieve doc ids
# #f.write( "# sent_id = "+str(i)+"\n" )
# # Write the original sentence text
# #f.write( "# text = "+sent_tokens+"\n" )
# # indices should start at 1
# for k, tok in enumerate( tokens ):
# label = aligned_preds[k]
# predictions.append( id2label[label] )
# #f.write( "\t".join( [str(k+1), tok, "_","_","_","_","_","_","_", id2label[label] ] )+"\n" )
# #f.write("\n")
# print("PREDICTIONS", predictions)
# count_pred_B, count_gold_B = 0, 0
# with open( dd.annotations_file, 'r' ) as fin:
# with open( pred_file, 'w' ) as fout:
# mylines = fin.readlines()
# count = 0
# if trace:
# print("len(predictions)", len(predictions))
# for l in mylines:
# l = l.strip()
# if l.startswith("#"):
# fout.write( l+'\n')
# elif l == '' or l == '\n':
# fout.write('\n')
# elif '-' in l.split('\t')[0]:
# fout.write( l+'\t'+'_'+'\n')
# else:
# if 'B' in predictions[count]:
# count_pred_B += 1
# if 'Seg=B-seg' in l or 'Conn=B-conn' in l:
# count_gold_B += 1
# fout.write( l+'\t'+predictions[count]+'\n')
# count += 1
# print("Count the number of predictions corresponding to a B", count_pred_B, "vs Gold B", count_gold_B)
# # TODO: dd????
# # TODO : only for SEG/CONN --> to rename (and make a generic function)
# def write_predictions_words( preds_from_model, dataset_eval, tokenizer, pred_file, trace=True ):
# '''
# Write predictions for segmentation or connective tasks in an output files.
# The output is the same as the input gold file, with an additional column
# corresponding to the predicted label.
# ?? We need the word_ids information to merge the words that been split et
# retrieve the original tokens from the input .tok / .conllu files and run
# evaluation.
# Parameters:
# -----------
# preds_from_model: list of int
# The predicted labels (numeric ids)
# dev: Dataset
# tokenized_dev
# pred_file: str
# Path to the file where predictions will be written
# id2label: dict
# Convert from ids to labels
# word_ids: list?
# Word ids, None for task rel
# dev_dataset : Dataset
# Dataset for the dev set
# dd : str?
# dset
# '''
# word_ids = dataset_eval.all_word_ids
# id2label = dataset_eval.id2label
# predictions = []
# for i in range( preds_from_model.shape[0] ):
# sent_input_ids = dataset_eval.tokenized_datasets['input_ids'][i]
# tokens = dataset_eval.dataset['tokens'][i]
# # sentence text
# sent_tokens = tokenizer.decode(sent_input_ids[1:-1])
# # list of decoded subtokens
# #sub_tokens = [tokenizer.decode(tok_id) for tok_id in sent_input_ids]
# # Merge subtokens and retrieve corresp. pred labels
# # i.e. we ignore: CLS, SEP, PAD and labels on ##subtoks
# aligned_preds = merge_tokens_preds_sent( word_ids[i], preds_from_model[i], tokens )
# if trace:
# print( '\n', i, sent_tokens )
# print( sent_input_ids )
# print( preds_from_model[i])
# print( ' '.join( tokens ) )
# print( "aligned_preds", aligned_preds )
# # sentence id, but TODO: retrieve doc ids
# #f.write( "# sent_id = "+str(i)+"\n" )
# # Write the original sentence text
# #f.write( "# text = "+sent_tokens+"\n" )
# # indices should start at 1
# for k, tok in enumerate( tokens ):
# label = aligned_preds[k]
# predictions.append( id2label[label] )
# #f.write( "\t".join( [str(k+1), tok, "_","_","_","_","_","_","_", id2label[label] ] )+"\n" )
# #f.write("\n")
# # print("PREDICTIONS", predictions)
# write_pred_file( dataset_eval.annotations_file, pred_file, predictions )