""" Classes to read/write disrpt-like files + analysis of sentence splitter / "gold" sentences or stanza/spacy sentences - ersatz Disrpt is a discourse analysis campaign with (as of 2023): - discourse segmentation information, in a conll-like format - discourse connective information (also conll-like) - discourse relations pairs, in a specific format data are separated by corpora and language with conventionnal names as language.framework.corpusname eg fra.srdt.annodis TODO: - refactor how sentences are stored with dictionary: "connlu" / "tok" / "split" [ok] dictionary ? refactor creation of corpus/documents to allow for update (or load tok+conllu at once) - [ok] italian luna corpus has different meta tags avec un niveau supplémentaire: newdoc_id/newturn_id/newutterance_id - [ok] check behaviour on languages without pretrained models/what candidates ? - nl, pt, it -> en? - thai -> multilingual - test different candidates sets for splitting locations: - [done] all -> trop sous-spécifié et trop lent - [ok] en on all but zho+thai - (done] en à la place de multilingual ? bad scores on zho - [ok] fix bad characters: BOM, replacement char etc spécial char for apostrophe, cf data_clean/eng.dep.scidtb/eng.dep.scidtb_train.tok / newdoc_id = P16-1030 prob de char pour possessif ��antagonist�� pb basque: "Osasun-zientzietako Ikertzaileen II ." nb tokens ... Iru�eko etc - pb turk: tur.pdtb.tdb/tur.pdtb.tdb_train: BOM ? '\ufeff' -> 'Makale' + extra blanc dans train (785)? 774 olduğunu _ _ _ _ _ _ _ _ 775 söylüyor _ _ _ _ _ _ _ _ 776 : _ _ _ _ _ _ _ _ 777 Türkiye _ _ _ _ _ _ _ _ 778 demokrasi _ _ _ _ _ _ _ _ 779 istiyor _ _ _ _ _ _ _ _ 780 ÖDPGenel _ _ _ _ _ _ _ _ 781 Başkanı _ _ _ _ _ _ _ _ 782 Ufuk _ _ _ _ _ _ _ _ 783 Uras'tan _ _ _ _ _ _ _ _ 784 : _ _ _ _ _ _ _ _ 785 _ _ _ _ _ _ _ _ 786 Türkiye _ _ _ _ _ _ _ _ 787 , _ _ _ _ _ _ _ _ 788 AİHM'de _ _ - pb zh zh: ?是 is this "?" listed in ersatz ? ??hosto2 sctb 3.巴斯克 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - specific preproc: annodis/gum: titles gum/rrt : biblio / articles scidtb ? - different sentence splitters - [ok] ersatz - trankit - [abandoned] stanza: FIXME: lots of errors done by stanza eg split within words (might be due to bad input tokenization) - [done] write doc in disrt format (after transformation for instance) - [done] eval of beginning of sentences (precision) - [done] (done in split_sentence script) eval / nb sentences connl ~= recall sentences - eval length sentences (max) - [moot] clean main script : arguments/argparse -> script à part - [done] method for sentence splitting (for tok) - [done] iterate all docs in corpus - [done] choose language according to corpus name automatically - ?method for sentence resplitting for conllu ? needs ways of indexing tokens for later reeval ? or eval script does not care ? candidate sets for splitting: - multilingual (default) is as described in ersatz paper == [EOS punctuation][!number] - en requires a space following punctuation - all: a space between any two characters - custom can be written that uses the determiner.Split() base class """ import sys, os import dataclasses from itertools import chain from collections import Counter from copy import copy, deepcopy from tqdm import tqdm #import progressbar #from ersatz import split, utils # import trankit #import stanza #from stanza.pipeline.core import DownloadMethod from transformers import pipeline from wtpsplit import SaT # needed to track the mistakes made in preprocessing of the disrpt dataset, whose origin is unknown BOM = '\ufeff' REPL_CHAR = "\ufffd" # � test_doc_seg = """# newdoc id = geop_3_space 1 La le DET _ Definite=Def|Gender=Fem|Number=Sing|PronType=Art 2 det _ BeginSeg=Yes 2 Space space PROPN _ _ 0 root _ _ 3 Launcher Launcher PROPN _ _ 2 flat:name _ _ 4 Initiative initiative PROPN _ _ 2 flat:name _ _ 5 . . PUNCT _ _ 2 punct _ _ 1 Le le DET _ Definite=Def|Gender=Masc|Number=Sing|PronType=Art 2 det _ BeginSeg=Yes 2 programme programme NOUN _ Gender=Masc|Number=Sing 10 nsubj _ _ 3 de de ADP _ _ 4 case _ _ 4 Space space PROPN _ _ 2 nmod _ _ 5 Launcher Launcher PROPN _ _ 4 flat:name _ _ 6 Initiative initiative PROPN _ _ 4 flat:name _ _ 7 ( ( PUNCT _ _ 8 punct _ BeginSeg=Yes 8 SLI SLI PROPN _ _ 4 appos _ _ 9 ) ) PUNCT _ _ 8 punct _ _ 10 vise viser VERB _ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 root _ BeginSeg=Yes 11 à à ADP _ _ 12 mark _ _ 12 développer développer VERB _ VerbForm=Inf 10 ccomp _ _ 13 un un DET _ Definite=Ind|Gender=Masc|Number=Sing|PronType=Art 14 det _ _ 14 système système NOUN _ Gender=Masc|Number=Sing 12 obj _ _ 15 de de ADP _ _ 16 case _ _ 16 lanceur lanceur NOUN _ Gender=Masc|Number=Sing 14 nmod _ _ 17 réutilisable réutilisable ADJ _ Gender=Masc|Number=Sing 16 amod _ _ 18 entièrement entièrement ADV _ _ 19 advmod _ _ 19 inédit inédit ADJ _ Gender=Masc|Number=Sing 14 amod _ _ 20 . . PUNCT _ _ 10 punct _ _ # newdoc id = ling_fuchs_section2 1 Théorie théorie PROPN _ _ 0 root _ BeginSeg=Yes 2 psychomécanique psychomécanique ADJ _ Gender=Masc|Number=Sing 1 amod _ _ 3 et et CCONJ _ _ 4 cc _ _ 4 cognition cognition NOUN _ Gender=Fem|Number=Sing 1 conj _ _ 5 . . PUNCT _ _ 1 punct _ _ """ # token is just a simple record type Token = dataclasses.make_dataclass("Token","id form lemma pos xpos morph head_id dep_type extra label".split(), namespace={'__repr__': lambda self: self.form, 'format': lambda self: ("\t".join(map(str,dataclasses.astuple(self)))), # ignored for now cos we just get rid of MWE when reading disrpt file # but could be changed in the future #'is_MWE': lambda self: type(self.id) is str and "-" in self.id, } ) class Sentence: def __init__(self,token_list,meta): self.toks = token_list self.meta = meta # Added by Firmin or chloe ? self.label_start = ["Seg=B-conn", "Seg=B-seg"] self.label_end = ["Seg=I-conn", "Seg=O"] def __iter__(self): return iter(self.toks) def __len__(self): return len(self.toks) def display(self,segment=False): """if segment option set to true, print sentences with marking of EDUs""" if segment: output = [f"{'|' if token.label=='Seg=B-seg' else ''}{token.form}" for token in self] # output = [f"{'|' if token.label=='BeginSeg=Yes' else ''}{token.form}" for token in self] return " ".join(output)+"|" else: return self.meta["text"] def __in__(self,word): for token in self.toks: if token.form == word: return True return False def __repr__(self): return self.display() def format(self): meta = f"# sent_id = {self.meta['sent_id']}\n" + f"# text = {self.meta['text']}\n" output = "\n".join([t.format() for t in self.toks]) return meta+output # not necessary because of trankit auto-mode but probably safer at some point # why dont they use normalized language codes !!?? TRANKIT_LANG_MAP = { "de": "german", "en":"english", # to be tested "gum": "english-gum", "fr":"french", "it": "italian", "sp": "spanish", "es": "spanish", "eu": "basque", "zh": "chinese", "ru": "russian", "tr": "turkish", "pt":"portuguese", "fa": "persian", "nl":"dutch", # blah } lg_map = {"sp":"es", "po":"pt", "tu":"tr"} def get_language(lang,model): lang = lang[:2] if lang in lg_map: lang = lg_map[lang] if model=="ersatz": if lang not in ersatz_languages: lang = "default-multilingual" if model=="trankit": lang = TRANKIT_LANG_MAP.get(lang,"auto") return lang # This is taken from ersatz https://github.com/rewicks/ersatz/blob/master/ersatz/candidates.py # sentence ending punctuation # U+0964 । Po DEVANAGARI DANDA # U+061F ؟ Po ARABIC QUESTION MARK # U+002E . Po FULL STOP # U+3002 。 Po IDEOGRAPHIC FULL STOP # U+0021 ! Po EXCLAMATION MARK # U+06D4 ۔ Po ARABIC FULL STOP # U+17D4 ។ Po KHMER SIGN KHAN # U+003F ? Po QUESTION MARK # U+2026 ... Po Ellipsis # U+30FB # U+002A * # other acceptable punctuation # U+3011 】 Pe RIGHT BLACK LENTICULAR BRACKET # U+00BB » Pf RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK # U+201D " Pf RIGHT DOUBLE QUOTATION MARK # U+300F 』 Pe RIGHT WHITE CORNER BRACKET # U+2018 ‘ Pi LEFT SINGLE QUOTATION MARK # U+0022 " Po QUOTATION MARK # U+300D 」 Pe RIGHT CORNER BRACKET # U+201C " Pi LEFT DOUBLE QUOTATION MARK # U+0027 ' Po APOSTROPHE # U+2019 ’ Pf RIGHT SINGLE QUOTATION MARK # U+0029 ) Pe RIGHT PARENTHESIS ending_punc = { '\u0964', '\u061F', '\u002E', '\u3002', '\u0021', '\u06D4', '\u17D4', '\u003F', '\uFF61', '\uFF0E', '\u2026', } closing_punc = { '\u3011', '\u00BB', '\u201D', '\u300F', '\u2018', '\u0022', '\u300D', '\u201C', '\u0027', '\u2019', '\u0029' } list_set = { '\u30fb', '\uFF65', '\u002a', # asterisk '\u002d', '\u4e00' } class Document: _hard_punct = {"default":{".",";","?","!"}| ending_punc, "zh": {"。","?"} } def __init__(self,sentence_list,meta,src="conllu"): self.sentences = {src:sentence_list} self.meta = meta def __repr__(self): # ADDED (chloe) the if : else of file type if "tok" in self.sentences: return "\n".join(map(repr,self.sentences.get("conllu",self.sentences["tok"]))) elif "conllu" in self.sentences: return "\n".join(map(repr,self.sentences.get("conllu",self.sentences["conllu"]))) else: sys.exit("Unknown type of file: "+str(self.sentences.keys())) def get_sentences(self,src="tok"): return self.sentences[src] def baseline_split(self,lang="default"): """default split for languages where we have issues re-aligning tokens for various reasons this just splits at every token that is a hard punctuations FIXME : this is not complete """ sentence_id = 1 sentences = [] current = [] orig_doc = self.sentences["tok"][0] for token in orig_doc: current.append(token) if token.lemma in self._hard_punct.get(lang,"default"): sentences.append(Sentence(current,meta)) meta = {"doc_id":orig_doc.meta["doc_id"], "sent_id" : sentence_id, "text": " ".join([x.form for x in current]) } current = [] sentence += 1 if current!=[]: meta = {"doc_id":orig_doc.meta["doc_id"], "sent_id" : sentence_id, "text": " ".join([x.form for x in current]) } sentences.append(Sentence(current,meta)) return sentences def cutoff_split(self,cutoff=120,lang="default"): """ default split for corpora with little or no punctuation (transcription etc) just make a new sentence as soon as more than cutoff tokens """ sentence_id = 1 sentences = [] current = [] current_cpt = 1 orig_doc = self.sentences["tok"][0] meta = {"doc_id":orig_doc.meta["doc_id"], "sent_id" : sentence_id, } for token in orig_doc: token.id = current_cpt current_cpt += 1 current.append(token) #print(token, token.id) if len(current) >= cutoff: #print(orig_doc.meta["doc_id"],token,current) meta = {"doc_id":orig_doc.meta["doc_id"], "sent_id" : sentence_id, "text": " ".join([x.form for x in current]) } sentences.append(Sentence(current,meta)) current = [] sentence_id += 1 current_cpt = 1 if current!=[]: meta = {"doc_id":orig_doc.meta["doc_id"], "sent_id" : sentence_id, "text": " ".join([x.form for x in current]) } sentences.append(Sentence(current,meta)) return sentences def ersatz_split(self,doc,lang='default-multilingual',candidates="en"): result = split(model=lang, text=doc, output=None, batch_size=16, candidates=candidates,#'multilingual', cpu=True, columns=None, delimiter='\t') return result def stanza_split(self,orig_doc,lang): nlp = stanza.Pipeline(lang=lang, processors='tokenize',download_method=DownloadMethod.REUSE_RESOURCES) doc = nlp(orig_doc) sentences = [] for s in doc.sentences: sentences.append(" ".join([t.text for t in s.tokens])) return sentences #for i, sentence in enumerate(doc.sentences): for token in sentence.tokens / token.text def trankit_split(self,orig_doc,lang,pipeline): trk_sentences = pipeline.ssplit(orig_doc) sentences = [] for s in trk_sentences["sentences"]: sentences.append(s["text"]) return sentences def sat_split(self, orig_doc, sat_model): sat_sentences = sat_model.split( str(orig_doc) ) sentences = [] for s in sat_sentences: sentences.append(s) return sentences # TODO: debug option to for warnings on/off def _remap_tokens(self,split_sentences): """remap tokens from sentence splitting to the token original information""" #return split_sentences # if this fails, there's been a bug: count of tokens is different in original text, and total # of split sentences # TODO: this is bound to happen, but the output should keep the original token count; how ? # TODO: REALIGN by detecting split tokens orig_token_nb = sum(map(len,self.sentences["tok"])) split_token_nb = len(list(chain(*[x.split() for x in split_sentences]))) try: assert orig_token_nb==split_token_nb except: print("WARNING wrong nb of tokens",orig_token_nb,"initially but",split_token_nb,"after split",file=sys.stderr) #raise NotImplementedError new_sentences = [] position = 0 skip_first_token = False # will only work when splitting tok files, not resplitting conllu orig_doc = self.sentences["tok"][0] for i,s in enumerate(split_sentences): new_toks = s.split() if skip_first_token:# see below new_toks = new_toks[1:] toks = orig_doc.toks[position:position+len(new_toks)] meta = {"doc_id":orig_doc.meta["doc_id"], "sent_id" : i+1, "text": " ".join([x.form for x in toks]) } new_tok_position = position shift = 0 # advance thru new tokens in case of erroneous splits # actual nb of tokens to advance in the original document # new tokens might include split token by mistake (tricky) new_toks_length = len(new_toks) for j in range(len(toks)): toks[j].id = j+1 new_j = j + shift try: assert toks[j].form==new_toks[new_j] # a split token has been detected meaning it had a punctuation sign in it and makes a "fake" sentence # it will be recovered in current sentence so should be skipped in the next one skip_first_token = False except: # TODO: check next token can be recovered # pb with chinese punctuation difference codes ? #print(f"WARNING === Token mismatch: {j,toks[j].form,new_toks[new_j]} \n {toks} \n {new_toks}",file=sys.stderr) # first case: within the same sentence (unlikely if a token was split by a punctuation) if j!= len(toks)-1: if len(toks[j].form)!=len(new_toks[new_j]): # if same length this is probably just an encoding problem (chinese cases) so just ignore it #print(f"INFO: split token still within the sentence {j,toks[j].form,new_toks[new_j]} ... should not happen",file=sys.stderr) if toks[j].form==new_toks[new_j]+new_toks[new_j+1]: #print(f"INFO: split token correctly identified as {j,toks[j].form,new_toks[new_j]+new_toks[new_j+1]} ... advancing to next one",file=sys.stderr) shift = shift + 1 # second case: the sentence ends here and next token is in the next split sentence, which necessarily exists (?) else: if i+10: # joining the first token might have generated an empty sentence new_sentences.append(Sentence(toks,meta)) position = position + len(new_toks) - shift else: skip_first_token = False split_token_nb = sum( [len(s.toks) for s in new_sentences] ) #print( "split_token_nb", split_token_nb) try: assert orig_token_nb==split_token_nb except: print("ERROR wrong nb of tokens",orig_token_nb,"originally but",split_token_nb,"after split+remap",file=sys.stderr) sys.exit() return new_sentences def sentence_split(self,model="ersatz",lang="default-multilingual",**kwargs): """ call the sentence splitter to the actual document read as one from a tok file. kwargs might contain an open "pipeline" (eg. trankit pipeline) to pass on downstream for splitting sentences, so that it is not re-created for each paragraph """ # if we split, the doc has been read as only one sentence # we ignore multi-word-expression at reading time, but if this needs to be changed, it will impact this line: doc = [x.form for x in self.sentences["tok"][0]] # if not(x.is_MWE())] doc = " ".join(doc) if model=="ersatz": # empirically seems better: "en" for all alphabet-based language # (candidates = candidate location for sentence splitting) # not to be confused with the language of the model candidates = "en" if lang not in {"zh","th"} else "multilingual" new_sentences = self.ersatz_split(doc,lang=lang,candidates=candidates) elif model=="stanza": new_sentences = self.stanza_split(doc,lang=lang) elif model=="trankit":# initiliazed pipeline is passed on here new_sentences = self.trankit_split(doc,lang=lang,**kwargs) elif model=="baseline": new_sentences = self.baseline_split(lang=lang) self.sentences["split"] = new_sentences elif model=="sat": sat_model = kwargs.get("sat_model") if sat_model is None: raise ValueError("sat_model must be provided for SAT sentence splitting.") new_sentences = self.sat_split(doc, sat_model) self.sentences["split"] = new_sentences elif model == "cutoff":# FIXME should be a way to pass on the cutoff new_sentences = self.cutoff_split(lang=lang) self.sentences["split"] = new_sentences else: raise NotImplementedError if model!="baseline" and model!="cutoff": self.sentences["split"] = self._remap_tokens(new_sentences) return self.sentences["split"] def search_word(self,word): return [s for s in self.sentences.get("split",[]) if word in s] def format(self,mode="split"): """format the document as disrpt format mode=original (sentences) or split (split_sentences) """ target = self.sentences[mode] output = "\n".join([s.format()+"\n" for s in target]) meta = f"# doc_id = {self.meta}\n" return meta+output #+"\n" class Corpus: META_types = {"newdoc_id":"doc_id", "newdoc id":"doc_id", "doc_id":"doc_id", "sent_id":"sent_id", "newturn_id":"newturn_id", "newutterance":"newutterance", "newutterance_id":"newutterance_id", "text":"text", } def __init__(self,data=None): """input to constructor is a string """ if data: self.docs = self._parse(data.split("\n")) @staticmethod def _meta_parse(data_line): """ parse comments as they contain meta information""" if not("=" in data_line):# not a meta line return "","" info, value = data_line[1:].strip().split("=",1) info = info.strip() if info in Corpus.META_types: meta_type = Corpus.META_types[info] else:# TODO should send a warning #print("WARNING: bad meta line",info, value,data_line,file=sys.stderr) -> this is just flooding the output meta_type, value = "","" return meta_type,value.strip() def search_doc(self,docid): return [x for x in self.docs if x.meta==docid] def _parse(self,data_lines,src="tok"): """parse disrpt segmentation/connective files""" curr_token_list = [] sentences = [] docs = [] s_idx = 0 doc_idx = 0 meta = {} for data_line in data_lines: data_line = data_line.strip() if data_line: # comments always include some meta info of the form "metatype = value", minimally the document id if data_line.startswith("#"): meta_type,value = Corpus._meta_parse(data_line) # start of a new doc, save previous one if it exists if meta_type=="doc_id": # print( doc_idx) if doc_idx>0: # print(src) docs.append(Document(sentences,meta["doc_id"],src=src)) sentences = [] curr_token_list = [] s_idx = 0 meta = {} doc_idx += 1 if meta_type!="": meta[meta_type] = value else: token, label = self.parse_token(meta, data_line) # print(token, label) # if this is a MWE, just ignore it. MWE have ids combining original token ids, eg "30-31" # TODO: refactor in parse_token + boolean flag if ok if not("-" in token[0]) and not("." in token[0]): curr_token_list.append(Token(*token,label)) else:# end of sentence meta["text"] = " ".join((x.form for x in curr_token_list)) s_idx += 1 # some corpora dont have ids for sentences if "sent_id" not in meta: meta["sent_id"] = s_idx sentences.append(Sentence(curr_token_list,meta)) curr_token_list = [] meta = {"doc_id":meta["doc_id"]} if len(curr_token_list)>0 or len(sentences)>0:# final sentence for final document meta["text"] = " ".join((x.form for x in curr_token_list)) sentences.append(Sentence(curr_token_list,meta)) #print("="*50) #print(meta.keys()) #print(len(curr_token_list),len(sentences)) docs.append(Document(sentences,meta["doc_id"],src=src)) # print(src) return docs def format(self, file=None, mode="split"): output = "\n\n".join([doc.format(mode=mode) for doc in self.docs]) if file: os.makedirs(os.path.dirname(file), exist_ok=True) with open(file, "w", encoding="utf-8") as f: f.write(output) return output def parse_token(self, meta, data_line): *token, label = data_line.split("\t") if len(token)==8: print("ERROR: missing label ",meta,token,file=sys.stderr) token = token + [label] label = '_' # needed because of errors in source of some corpora (russian with BOM kept as token; also bad reading of some chars) # to prevent token counts/tokenization from failing, they are replaced with '_' # token[1] is the form of the token if token[1] == BOM: token[1]="_" #if token[1] == '200�000': # print("GOTCHA") token[1] = token[1].replace(REPL_CHAR,"_") label_set = set(label.split("|")) label = (label_set & set(self.LABELS)) if label==set(): label= "_" else: label = label.pop() return token,label def from_file(self,filepath): """ reads a conllu or tok file connlu has sentences, tok does not option to pass on a string instead of file path, mostly for testing TODO: should be a static method """ self.filepath = filepath basename = os.path.basename(filepath) src = basename.split(".")[-1] # tok or connlu or split #print("src = ",src) with open(filepath,"r",encoding="utf8") as f: data_lines = f.readlines() self.docs = self._parse(data_lines,src=src) # for sent in self.docs: # print( sent ) def from_string(self, text: str, src="conllu"): """ Lit directement à partir d'une string (utile pour tests ou génération dynamique). src peut être 'conllu', 'tok', ou 'split' pour indiquer le format. """ self.filepath = None if isinstance(text, str): data_lines = text.strip().splitlines() else: raise ValueError("from_string attend une chaîne de caractères") self.docs = self._parse(data_lines, src=src) def format(self,mode="split",file=sys.stdout): if type(file)==str: os.makedirs(os.path.dirname(file), exist_ok=True) file = open(file,"w") for d in self.docs: print(d.format(mode=mode),file=file) def align(self,filepath): """load conllu for corresponding tok file""" pass def sentence_split(self,model="ersatz",lang="default-multilingual",**kwargs): """apply a sentence splitter to the document, assuming this was read from a .tok file kwargs might contain an open "pipeline" (eg. trankit pipeline) to pass on downstream for splitting sentences, so that it is not re-created for each paragraph """ for doc in tqdm(self.docs): doc.sentence_split(model=model,lang=lang,**kwargs) def eval_sentences(self,mode="split"): """eval sentence beginning as segment beginning TODO rename -> precision only .tok for now but could be used to eval re-split of connlu more complex for pdtb: need to align tok and connlu """ tp = 0 total_s = 0 labels = [] for doc in self.docs: for s in doc.get_sentences(mode): if len(s.toks)==0: print("WARNING empty sentence in ",s.meta,file=sys.stderr) break tp += (s.toks[0].label=="Seg=B-seg") # tp += (s.toks[0].label=="BeginSeg=Yes") total_s += 1 labels.extend([x.label for x in s]) counts = Counter(labels) # return tp, total_s, counts["BeginSeg=Yes"] return tp, total_s, counts["Seg=B-seg"] class SegmentCorpus(Corpus): LABELS = ["Seg=O","Seg=B-seg"] class ConnectiveCorpus(Corpus): LABELS = ['Conn=O', 'Conn=B-conn', 'Conn=I-conn'] id2label = {i: label for i, label in enumerate( LABELS )} label2id = {v: k for k,v in id2label.items()} class RelationCorpus(Corpus): def from_file(self,filepath): pass # ersatz existing language-specific models # for ersatz 1.0.0: # ['en', 'ar', 'cs', 'de', 'es', 'et', 'fi', 'fr', 'gu', 'hi', 'iu', 'ja', # 'kk', 'km', 'lt', 'lv', 'pl', 'ps', 'ro', 'ru', 'ta', 'tr', 'zh', 'default-multilingual'] # missing disrpt languages/what candidates ? nl, pt, it -> en? thai -> multilingual if __name__=="__main__": # testing import sys, os from pathlib import PurePath # from ersatz import split, utils # ersatz existing language-specific models # languages = utils.MODELS.keys() sat = SaT("sat-3l") # 3L is better with French guillemets #print(corpus.docs[0].sentences[11].display(segment=True)) print( sat.split("This is a test This is another test.") ) if len(sys.argv)>1: test_path = sys.argv[1] else: test_path = "../jiant/tests/test_data/eng.pdtb.pdtb/eng.pdtb.pdtb_debug.tok" # test_path = "../jiant/tests/test_data/eng.pdtb.pdtb/eng.pdtb.pdtb_debug.tok" basename = os.path.basename(test_path) lang = basename.split(".")[0] # lang = get_language(lang,"trankit") path = PurePath(test_path) #output_path = str(path.with_suffix(".split")) output_path = "out" if "pdtb" in test_path: corpus = ConnectiveCorpus() else: corpus = SegmentCorpus() corpus.from_file(test_path) sat = SaT("sat-3l") # 3L is better with French guillemets #print(corpus.docs[0].sentences[11].display(segment=True)) print( sat.split("This is a test This is another test.") ) doc1 = corpus.docs[0] s0 = doc1.sentences["tok"][0] print(doc1) print(list(sat.split(str(doc1)))) # list(res) # pipe = pipeline("token-classification", model="segment-any-text/sat-1l") # res = doc1.sentence_split(model="sat") # ------------------------------------------ # -- From SaT DOC # https://github.com/segment-any-text/wtpsplit?tab=readme-ov-file#usage # sat = SaT("sat-3l") # optionally run on GPU for better performance # also supports TPUs via e.g. sat.to("xla:0"), in that case pass `pad_last_batch=True` to sat.split # sat.half().to("cuda") # print( sat.split("This is a test This is another test.") ) # returns ["This is a test ", "This is another test."] # # do this instead of calling sat.split on every text individually for much better performance # sat.split(["This is a test This is another test.", "And some more texts..."]) # # returns an iterator yielding lists of sentences for every text # # use our '-sm' models for general sentence segmentation tasks # sat_sm = SaT("sat-3l-sm") # sat_sm.half().to("cuda") # optional, see above # sat_sm.split("this is a test this is another test") # # returns ["this is a test ", "this is another test"] # # use trained lora modules for strong adaptation to language & domain/style # sat_adapted = SaT("sat-3l", style_or_domain="ud", language="en") # sat_adapted.half().to("cuda") # optional, see above # sat_adapted.split("This is a test This is another test.") # # returns ['This is a test ', 'This is another test'] # check that number of token is conserved by sentence splitting # #assert sum(map(len,doc1.sentences))==len(list(chain(*[x.split() for x in res]))) # pipeline = trankit.Pipeline(lang,gpu=True) # corpus.sentence_split(model="trankit",lang=lang,pipeline=pipeline) corpus.sentence_split(model="sat", sat_model=sat) tp, tot, all = corpus.eval_sentences() print(tp, tot, all) #print(corpus.docs[0].split_sentences[0].toks[0].format()) corpus.format(file=output_path)