Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files
app.py
CHANGED
|
@@ -21,7 +21,10 @@ import numpy as np
|
|
| 21 |
import pdb
|
| 22 |
# This repository's directory
|
| 23 |
REPO_DIR = Path(__file__).parent
|
| 24 |
-
subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
# if not exists, create a directory for the FHE keys called .fhe_keys
|
| 27 |
if not os.path.exists(".fhe_keys"):
|
|
@@ -146,7 +149,7 @@ def run_fhe(user_id):
|
|
| 146 |
headers = {"Content-type": "application/json"}
|
| 147 |
|
| 148 |
response = requests.post(
|
| 149 |
-
"http://localhost:
|
| 150 |
data=json.dumps(query),
|
| 151 |
headers=headers,
|
| 152 |
)
|
|
@@ -177,7 +180,6 @@ def decrypt_prediction(user_id):
|
|
| 177 |
return predictions
|
| 178 |
|
| 179 |
|
| 180 |
-
|
| 181 |
def process_pipeline(test_file):
|
| 182 |
|
| 183 |
eval_key = keygen()
|
|
@@ -205,4 +207,4 @@ if __name__ == "__main__":
|
|
| 205 |
description="This is a FHE Model",
|
| 206 |
)
|
| 207 |
|
| 208 |
-
app.launch(share=True)
|
|
|
|
| 21 |
import pdb
|
| 22 |
# This repository's directory
|
| 23 |
REPO_DIR = Path(__file__).parent
|
| 24 |
+
# subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
subprocess.Popen(["uvicorn", "server:app", "--port", "3000"], cwd=REPO_DIR)
|
| 28 |
|
| 29 |
# if not exists, create a directory for the FHE keys called .fhe_keys
|
| 30 |
if not os.path.exists(".fhe_keys"):
|
|
|
|
| 149 |
headers = {"Content-type": "application/json"}
|
| 150 |
|
| 151 |
response = requests.post(
|
| 152 |
+
"http://localhost:3000/predict",
|
| 153 |
data=json.dumps(query),
|
| 154 |
headers=headers,
|
| 155 |
)
|
|
|
|
| 180 |
return predictions
|
| 181 |
|
| 182 |
|
|
|
|
| 183 |
def process_pipeline(test_file):
|
| 184 |
|
| 185 |
eval_key = keygen()
|
|
|
|
| 207 |
description="This is a FHE Model",
|
| 208 |
)
|
| 209 |
|
| 210 |
+
app.launch() #share=True)
|
server.py
CHANGED
|
@@ -5,6 +5,8 @@ from concrete.ml.deployment import FHEModelServer
|
|
| 5 |
from pydantic import BaseModel
|
| 6 |
import base64
|
| 7 |
from pathlib import Path
|
|
|
|
|
|
|
| 8 |
|
| 9 |
current_dir = Path(__file__).parent
|
| 10 |
|
|
@@ -35,4 +37,7 @@ def predict(query: PredictRequest):
|
|
| 35 |
|
| 36 |
# Encode base64 the prediction
|
| 37 |
encoded_prediction = base64.b64encode(prediction).decode()
|
| 38 |
-
return {"encrypted_prediction": encoded_prediction}
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from pydantic import BaseModel
|
| 6 |
import base64
|
| 7 |
from pathlib import Path
|
| 8 |
+
import uvicorn
|
| 9 |
+
|
| 10 |
|
| 11 |
current_dir = Path(__file__).parent
|
| 12 |
|
|
|
|
| 37 |
|
| 38 |
# Encode base64 the prediction
|
| 39 |
encoded_prediction = base64.b64encode(prediction).decode()
|
| 40 |
+
return {"encrypted_prediction": encoded_prediction}
|
| 41 |
+
|
| 42 |
+
#if __name__ == "__main__":
|
| 43 |
+
# uvicorn.run(app, host="0.0.0.0", port=3000)
|