Spaces:
Build error
Build error
Commit
·
0489425
1
Parent(s):
097c2b7
fix
Browse files- app.py +141 -14
- heart_disease_dt_model.pkl +0 -0
- server.py +0 -149
app.py
CHANGED
|
@@ -1,22 +1,149 @@
|
|
| 1 |
import numpy as np
|
| 2 |
import pandas as pd
|
| 3 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from sklearn.tree import DecisionTreeClassifier #using sklearn decisiontreeclassifier
|
|
|
|
| 5 |
|
| 6 |
-
#
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
dt = joblib.load('heart_disease_dt_model.pkl')
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
# Make prediction on the first row of data
|
| 13 |
-
#prediction = dt.predict(sample_data, fhe="execute")
|
| 14 |
-
prediction = dt.predict(sample_data) # clair
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import pandas as pd
|
| 3 |
+
import seaborn as sns
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import joblib
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import shutil
|
| 9 |
+
|
| 10 |
+
# Define the directory for FHE client/server files
|
| 11 |
+
fhe_directory = '/tmp/fhe_client_server_files/'
|
| 12 |
+
|
| 13 |
+
# Create the directory if it does not exist
|
| 14 |
+
if not os.path.exists(fhe_directory):
|
| 15 |
+
os.makedirs(fhe_directory)
|
| 16 |
+
else:
|
| 17 |
+
# If it exists, delete its contents
|
| 18 |
+
shutil.rmtree(fhe_directory)
|
| 19 |
+
os.makedirs(fhe_directory)
|
| 20 |
+
|
| 21 |
+
data=pd.read_csv('data/heart.xls')
|
| 22 |
+
|
| 23 |
+
data.info() #checking the info
|
| 24 |
+
|
| 25 |
+
data_corr=data.corr()
|
| 26 |
+
|
| 27 |
+
plt.figure(figsize=(20,20))
|
| 28 |
+
sns.heatmap(data=data_corr,annot=True)
|
| 29 |
+
#Heatmap for data
|
| 30 |
+
|
| 31 |
+
feature_value=np.array(data_corr['output'])
|
| 32 |
+
for i in range(len(feature_value)):
|
| 33 |
+
if feature_value[i]<0:
|
| 34 |
+
feature_value[i]=-feature_value[i]
|
| 35 |
+
|
| 36 |
+
print(feature_value)
|
| 37 |
+
|
| 38 |
+
features_corr=pd.DataFrame(feature_value,index=data_corr['output'].index,columns=['correalation'])
|
| 39 |
+
|
| 40 |
+
feature_sorted=features_corr.sort_values(by=['correalation'],ascending=False)
|
| 41 |
+
|
| 42 |
+
feature_selected=feature_sorted.index
|
| 43 |
+
|
| 44 |
+
feature_selected #selected features which are very much correalated
|
| 45 |
+
|
| 46 |
+
clean_data=data[feature_selected]
|
| 47 |
+
|
| 48 |
from sklearn.tree import DecisionTreeClassifier #using sklearn decisiontreeclassifier
|
| 49 |
+
from sklearn.model_selection import train_test_split
|
| 50 |
|
| 51 |
+
#making input and output dataset
|
| 52 |
+
X=clean_data.iloc[:,1:]
|
| 53 |
+
Y=clean_data['output']
|
| 54 |
|
| 55 |
+
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.25,random_state=0)
|
|
|
|
| 56 |
|
| 57 |
+
print(x_train.shape,y_train.shape,x_test.shape,y_test.shape) #data is splited in traing and testing dataset
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
# feature scaling
|
| 60 |
+
from sklearn.preprocessing import StandardScaler
|
| 61 |
+
sc=StandardScaler()
|
| 62 |
+
x_train=sc.fit_transform(x_train)
|
| 63 |
+
x_test=sc.transform(x_test)
|
| 64 |
+
|
| 65 |
+
#training our model
|
| 66 |
+
dt=DecisionTreeClassifier(criterion='entropy',max_depth=6)
|
| 67 |
+
dt.fit(x_train,y_train)
|
| 68 |
+
#dt.compile(x_trqin)
|
| 69 |
+
|
| 70 |
+
#predicting the value on testing data
|
| 71 |
+
y_pred=dt.predict(x_test)
|
| 72 |
+
|
| 73 |
+
#ploting the data
|
| 74 |
+
from sklearn.metrics import confusion_matrix
|
| 75 |
+
conf_mat=confusion_matrix(y_test,y_pred)
|
| 76 |
+
print(conf_mat)
|
| 77 |
+
accuracy=dt.score(x_test,y_test)
|
| 78 |
+
print("\nThe accuracy of decisiontreelassifier on Heart disease prediction dataset is "+str(round(accuracy*100,2))+"%")
|
| 79 |
+
|
| 80 |
+
joblib.dump(dt, 'heart_disease_dt_model.pkl')
|
| 81 |
+
|
| 82 |
+
from concrete.ml.sklearn.tree import DecisionTreeClassifier
|
| 83 |
+
|
| 84 |
+
fhe_compatible = DecisionTreeClassifier.from_sklearn_model(dt, x_train, n_bits = 10)
|
| 85 |
+
fhe_compatible.compile(x_train)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
#### server
|
| 93 |
+
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer
|
| 94 |
+
|
| 95 |
+
# Setup the development environment
|
| 96 |
+
dev = FHEModelDev(path_dir=fhe_directory, model=fhe_compatible)
|
| 97 |
+
dev.save()
|
| 98 |
+
|
| 99 |
+
# Setup the server
|
| 100 |
+
server = FHEModelServer(path_dir=fhe_directory)
|
| 101 |
+
server.load()
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
####### client
|
| 110 |
+
|
| 111 |
+
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer
|
| 112 |
+
|
| 113 |
+
# Setup the client
|
| 114 |
+
client = FHEModelClient(path_dir=fhe_directory, key_dir="/tmp/keys_client")
|
| 115 |
+
serialized_evaluation_keys = client.get_serialized_evaluation_keys()
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
# Load the dataset and select the relevant features
|
| 119 |
+
data = pd.read_csv('data/heart.xls')
|
| 120 |
+
|
| 121 |
+
# Perform the correlation analysis
|
| 122 |
+
data_corr = data.corr()
|
| 123 |
+
|
| 124 |
+
# Select features based on correlation with 'output'
|
| 125 |
+
feature_value = np.array(data_corr['output'])
|
| 126 |
+
for i in range(len(feature_value)):
|
| 127 |
+
if feature_value[i] < 0:
|
| 128 |
+
feature_value[i] = -feature_value[i]
|
| 129 |
+
|
| 130 |
+
features_corr = pd.DataFrame(feature_value, index=data_corr['output'].index, columns=['correlation'])
|
| 131 |
+
feature_sorted = features_corr.sort_values(by=['correlation'], ascending=False)
|
| 132 |
+
feature_selected = feature_sorted.index
|
| 133 |
+
|
| 134 |
+
# Clean the data by selecting the most correlated features
|
| 135 |
+
clean_data = data[feature_selected]
|
| 136 |
+
|
| 137 |
+
# Extract the first row of feature data for prediction (excluding 'output' column)
|
| 138 |
+
sample_data = clean_data.iloc[0, 1:].values.reshape(1, -1) # Reshape to 2D array for model input
|
| 139 |
+
|
| 140 |
+
encrypted_data = client.quantize_encrypt_serialize(sample_data)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
##### end client
|
| 145 |
+
|
| 146 |
+
encrypted_result = server.run(encrypted_data, serialized_evaluation_keys)
|
| 147 |
|
| 148 |
+
result = client.deserialize_decrypt_dequantize(encrypted_result)
|
| 149 |
+
print(result)
|
heart_disease_dt_model.pkl
CHANGED
|
Binary files a/heart_disease_dt_model.pkl and b/heart_disease_dt_model.pkl differ
|
|
|
server.py
DELETED
|
@@ -1,149 +0,0 @@
|
|
| 1 |
-
import numpy as np
|
| 2 |
-
import pandas as pd
|
| 3 |
-
import seaborn as sns
|
| 4 |
-
import matplotlib.pyplot as plt
|
| 5 |
-
import joblib
|
| 6 |
-
|
| 7 |
-
import os
|
| 8 |
-
import shutil
|
| 9 |
-
|
| 10 |
-
# Define the directory for FHE client/server files
|
| 11 |
-
fhe_directory = '/tmp/fhe_client_server_files/'
|
| 12 |
-
|
| 13 |
-
# Create the directory if it does not exist
|
| 14 |
-
if not os.path.exists(fhe_directory):
|
| 15 |
-
os.makedirs(fhe_directory)
|
| 16 |
-
else:
|
| 17 |
-
# If it exists, delete its contents
|
| 18 |
-
shutil.rmtree(fhe_directory)
|
| 19 |
-
os.makedirs(fhe_directory)
|
| 20 |
-
|
| 21 |
-
data=pd.read_csv('data/heart.xls')
|
| 22 |
-
|
| 23 |
-
data.info() #checking the info
|
| 24 |
-
|
| 25 |
-
data_corr=data.corr()
|
| 26 |
-
|
| 27 |
-
plt.figure(figsize=(20,20))
|
| 28 |
-
sns.heatmap(data=data_corr,annot=True)
|
| 29 |
-
#Heatmap for data
|
| 30 |
-
|
| 31 |
-
feature_value=np.array(data_corr['output'])
|
| 32 |
-
for i in range(len(feature_value)):
|
| 33 |
-
if feature_value[i]<0:
|
| 34 |
-
feature_value[i]=-feature_value[i]
|
| 35 |
-
|
| 36 |
-
print(feature_value)
|
| 37 |
-
|
| 38 |
-
features_corr=pd.DataFrame(feature_value,index=data_corr['output'].index,columns=['correalation'])
|
| 39 |
-
|
| 40 |
-
feature_sorted=features_corr.sort_values(by=['correalation'],ascending=False)
|
| 41 |
-
|
| 42 |
-
feature_selected=feature_sorted.index
|
| 43 |
-
|
| 44 |
-
feature_selected #selected features which are very much correalated
|
| 45 |
-
|
| 46 |
-
clean_data=data[feature_selected]
|
| 47 |
-
|
| 48 |
-
from sklearn.tree import DecisionTreeClassifier #using sklearn decisiontreeclassifier
|
| 49 |
-
from sklearn.model_selection import train_test_split
|
| 50 |
-
|
| 51 |
-
#making input and output dataset
|
| 52 |
-
X=clean_data.iloc[:,1:]
|
| 53 |
-
Y=clean_data['output']
|
| 54 |
-
|
| 55 |
-
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.25,random_state=0)
|
| 56 |
-
|
| 57 |
-
print(x_train.shape,y_train.shape,x_test.shape,y_test.shape) #data is splited in traing and testing dataset
|
| 58 |
-
|
| 59 |
-
# feature scaling
|
| 60 |
-
from sklearn.preprocessing import StandardScaler
|
| 61 |
-
sc=StandardScaler()
|
| 62 |
-
x_train=sc.fit_transform(x_train)
|
| 63 |
-
x_test=sc.transform(x_test)
|
| 64 |
-
|
| 65 |
-
#training our model
|
| 66 |
-
dt=DecisionTreeClassifier(criterion='entropy',max_depth=6)
|
| 67 |
-
dt.fit(x_train,y_train)
|
| 68 |
-
#dt.compile(x_trqin)
|
| 69 |
-
|
| 70 |
-
#predicting the value on testing data
|
| 71 |
-
y_pred=dt.predict(x_test)
|
| 72 |
-
|
| 73 |
-
#ploting the data
|
| 74 |
-
from sklearn.metrics import confusion_matrix
|
| 75 |
-
conf_mat=confusion_matrix(y_test,y_pred)
|
| 76 |
-
print(conf_mat)
|
| 77 |
-
accuracy=dt.score(x_test,y_test)
|
| 78 |
-
print("\nThe accuracy of decisiontreelassifier on Heart disease prediction dataset is "+str(round(accuracy*100,2))+"%")
|
| 79 |
-
|
| 80 |
-
joblib.dump(dt, 'heart_disease_dt_model.pkl')
|
| 81 |
-
|
| 82 |
-
from concrete.ml.sklearn.tree import DecisionTreeClassifier
|
| 83 |
-
|
| 84 |
-
fhe_compatible = DecisionTreeClassifier.from_sklearn_model(dt, x_train, n_bits = 10)
|
| 85 |
-
fhe_compatible.compile(x_train)
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
#### server
|
| 93 |
-
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer
|
| 94 |
-
|
| 95 |
-
# Setup the development environment
|
| 96 |
-
dev = FHEModelDev(path_dir=fhe_directory, model=fhe_compatible)
|
| 97 |
-
dev.save()
|
| 98 |
-
|
| 99 |
-
# Setup the server
|
| 100 |
-
server = FHEModelServer(path_dir=fhe_directory)
|
| 101 |
-
server.load()
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
####### client
|
| 110 |
-
|
| 111 |
-
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer
|
| 112 |
-
|
| 113 |
-
# Setup the client
|
| 114 |
-
client = FHEModelClient(path_dir=fhe_directory, key_dir="/tmp/keys_client")
|
| 115 |
-
serialized_evaluation_keys = client.get_serialized_evaluation_keys()
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
# Load the dataset and select the relevant features
|
| 119 |
-
data = pd.read_csv('data/heart.xls')
|
| 120 |
-
|
| 121 |
-
# Perform the correlation analysis
|
| 122 |
-
data_corr = data.corr()
|
| 123 |
-
|
| 124 |
-
# Select features based on correlation with 'output'
|
| 125 |
-
feature_value = np.array(data_corr['output'])
|
| 126 |
-
for i in range(len(feature_value)):
|
| 127 |
-
if feature_value[i] < 0:
|
| 128 |
-
feature_value[i] = -feature_value[i]
|
| 129 |
-
|
| 130 |
-
features_corr = pd.DataFrame(feature_value, index=data_corr['output'].index, columns=['correlation'])
|
| 131 |
-
feature_sorted = features_corr.sort_values(by=['correlation'], ascending=False)
|
| 132 |
-
feature_selected = feature_sorted.index
|
| 133 |
-
|
| 134 |
-
# Clean the data by selecting the most correlated features
|
| 135 |
-
clean_data = data[feature_selected]
|
| 136 |
-
|
| 137 |
-
# Extract the first row of feature data for prediction (excluding 'output' column)
|
| 138 |
-
sample_data = clean_data.iloc[0, 1:].values.reshape(1, -1) # Reshape to 2D array for model input
|
| 139 |
-
|
| 140 |
-
encrypted_data = client.quantize_encrypt_serialize(sample_data)
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
##### end client
|
| 145 |
-
|
| 146 |
-
encrypted_result = server.run(encrypted_data, serialized_evaluation_keys)
|
| 147 |
-
|
| 148 |
-
result = client.deserialize_decrypt_dequantize(encrypted_result)
|
| 149 |
-
print(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|