Final commit?
Browse files- app.py +274 -104
- blockchain.json +9 -0
- blockchain.py +29 -28
- model_coef.npy +0 -0
- model_intercept.npy +0 -0
- wat_model_coef.npy +0 -0
- wat_model_intercept.npy +0 -0
- watermarking.py +135 -0
- x_test.npy +0 -0
- x_train.npy +0 -0
- x_trigger.npy +0 -0
- y_test.npy +0 -0
- y_train.npy +0 -0
- y_trigger.npy +0 -0
- zamark_r/app.py +424 -0
- zamark_r/blockchain.py +139 -0
- zamark_r/model_coef.npy +0 -0
- zamark_r/model_intercept.npy +0 -0
- zamark_r/wat_model_coef.npy +0 -0
- zamark_r/wat_model_intercept.npy +0 -0
- zamark_r/watermarking.py +135 -0
- zamark_r/x_test.npy +0 -0
- zamark_r/x_train.npy +0 -0
- zamark_r/x_trigger.npy +0 -0
- zamark_r/y_test.npy +0 -0
- zamark_r/y_train.npy +0 -0
- zamark_r/y_trigger.npy +0 -0
app.py
CHANGED
|
@@ -1,13 +1,19 @@
|
|
| 1 |
-
|
| 2 |
|
| 3 |
import streamlit as st
|
| 4 |
import hashlib
|
| 5 |
import uuid
|
| 6 |
import time
|
| 7 |
import json
|
|
|
|
|
|
|
| 8 |
|
| 9 |
from blockchain import Blockchain, print_blockchain_details
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
def generate_mock_hash():
|
| 12 |
return hashlib.sha256(str(time.time()).encode()).hexdigest()
|
| 13 |
|
|
@@ -87,37 +93,37 @@ def key_gen_fn(client_id):
|
|
| 87 |
st.success("Keys have been generated!", icon="✅")
|
| 88 |
|
| 89 |
|
| 90 |
-
def gen_trigger_set(client_id, hf_id):
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
def encode_id(ascii_rep, size=128):
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
|
| 122 |
|
| 123 |
def decode_id(binary_rep):
|
|
@@ -142,105 +148,260 @@ def decode_id(binary_rep):
|
|
| 142 |
return ascii_text
|
| 143 |
|
| 144 |
|
| 145 |
-
def compare_id(client_id, binary_triggert_set_result):
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
-
Args:
|
| 149 |
-
client_id (_type_): the ascii string
|
| 150 |
-
binary_triggert_set_result (_type_): the binary string
|
| 151 |
|
| 152 |
-
|
| 153 |
-
_type_: _description_
|
| 154 |
-
"""
|
| 155 |
-
ground_truth = encode_id(client_id, 128)
|
| 156 |
|
| 157 |
-
|
| 158 |
-
for true_bit, real_bit in zip(ground_truth, binary_triggert_set_result):
|
| 159 |
-
if true_bit != real_bit:
|
| 160 |
-
correct_bit += 1
|
| 161 |
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
| 167 |
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
""
|
| 172 |
-
todo()
|
| 173 |
-
|
| 174 |
-
model_file_path = SERVER_DIR / "watermarked_model"
|
| 175 |
-
trigger_set_file_path = SERVER_DIR / "trigger_set"
|
| 176 |
-
|
| 177 |
-
# TODO: remove once model correctly watermarked
|
| 178 |
-
model_file_path.touch()
|
| 179 |
-
trigger_set_file_path.touch()
|
| 180 |
-
|
| 181 |
-
# Once the model is watermarked and dumped to files (model + trigger set), the user can download them
|
| 182 |
-
with open(model_file_path, "rb") as model_file:
|
| 183 |
-
st.download_button(
|
| 184 |
-
label="Download the watermarked file",
|
| 185 |
-
data=model_file,
|
| 186 |
-
mime="application/octet-stream",
|
| 187 |
-
)
|
| 188 |
-
with open(trigger_set_file_path, "rb") as trigger_set_file:
|
| 189 |
-
st.download_button(
|
| 190 |
-
label="Download the triggert set",
|
| 191 |
-
data=trigger_set_file,
|
| 192 |
-
mime="application/octet-stream",
|
| 193 |
-
)
|
| 194 |
|
|
|
|
|
|
|
| 195 |
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
-
client_id = st.text_input("Identification string", "team-8-uuid")
|
| 199 |
|
| 200 |
-
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
-
|
|
|
|
| 206 |
|
| 207 |
-
|
| 208 |
-
|
| 209 |
|
| 210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
-
|
|
|
|
|
|
|
| 214 |
|
| 215 |
-
# Initialize session state to store the block data
|
| 216 |
-
if 'block_data' not in st.session_state:
|
| 217 |
-
st.session_state.block_data = None
|
| 218 |
|
| 219 |
-
# Button to update the blockchain
|
| 220 |
-
if st.button("Update Blockchain"):
|
| 221 |
-
# Charger la blockchain depuis le fichier JSON
|
| 222 |
-
loaded_blockchain, data = Blockchain.load_from_file("blockchain.json")
|
| 223 |
|
| 224 |
-
# Vérifier que la blockchain chargée est valide
|
| 225 |
-
print(f"La blockchain chargée est valide : {loaded_blockchain.is_chain_valid()}")
|
| 226 |
|
| 227 |
-
# Ajouter un nouveau bloc à la blockchain chargée
|
| 228 |
-
loaded_blockchain.add_block("HF Trigger Set 4", "Client Trigger Set 4", "Encrypted Model 4")
|
| 229 |
|
| 230 |
-
print("\nLoaded Blockchain:")
|
| 231 |
-
print_blockchain_details(loaded_blockchain)
|
| 232 |
|
| 233 |
-
# Sauvegarder la blockchain mise à jour
|
| 234 |
-
loaded_blockchain.save_to_file("blockchain.json")
|
| 235 |
|
|
|
|
| 236 |
|
| 237 |
-
|
| 238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
-
# Create the block data structure
|
| 241 |
-
st.session_state.block_data = data
|
| 242 |
|
| 243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
|
| 245 |
# Display the JSON if block_data exists
|
| 246 |
if st.session_state.block_data:
|
|
@@ -252,3 +413,12 @@ if st.session_state.block_data:
|
|
| 252 |
# Display the JSON
|
| 253 |
st.code(block_json, language='json')
|
| 254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
|
| 3 |
import streamlit as st
|
| 4 |
import hashlib
|
| 5 |
import uuid
|
| 6 |
import time
|
| 7 |
import json
|
| 8 |
+
import numpy as np
|
| 9 |
+
from concrete.ml.sklearn import SGDClassifier
|
| 10 |
|
| 11 |
from blockchain import Blockchain, print_blockchain_details
|
| 12 |
|
| 13 |
+
import watermarking
|
| 14 |
+
from watermarking import watermark_model
|
| 15 |
+
|
| 16 |
+
|
| 17 |
def generate_mock_hash():
|
| 18 |
return hashlib.sha256(str(time.time()).encode()).hexdigest()
|
| 19 |
|
|
|
|
| 93 |
st.success("Keys have been generated!", icon="✅")
|
| 94 |
|
| 95 |
|
| 96 |
+
# def gen_trigger_set(client_id, hf_id):
|
| 97 |
+
# # input : random images seeded by client_id
|
| 98 |
+
# # labels : binary array of the id
|
| 99 |
+
# watermark_uuid = uuid.uuid1()
|
| 100 |
+
# hash = hashlib.sha256()
|
| 101 |
+
# hash.update(client_id + str(watermark_uuid))
|
| 102 |
+
# client_seed = hash.digest()
|
| 103 |
+
# hash = hashlib.sha256()
|
| 104 |
+
# hash.update(hf_id + str(watermark_uuid))
|
| 105 |
+
# hf_seed = hash.digest()
|
| 106 |
+
#
|
| 107 |
+
# trigger_set_size = 128
|
| 108 |
+
#
|
| 109 |
+
# trigger_set_client = [
|
| 110 |
+
# {"input": 1, "label": digit} for digit in encode_id(client_id, trigger_set_size)
|
| 111 |
+
# ]
|
| 112 |
+
#
|
| 113 |
+
# todo()
|
| 114 |
+
#
|
| 115 |
+
#
|
| 116 |
+
# def encode_id(ascii_rep, size=128):
|
| 117 |
+
# """Encode a string id to a string of bits
|
| 118 |
+
#
|
| 119 |
+
# Args:
|
| 120 |
+
# ascii_rep (_type_): The id string
|
| 121 |
+
# size (_type_): The size of the output bit string
|
| 122 |
+
#
|
| 123 |
+
# Returns:
|
| 124 |
+
# _type_: a string of bits
|
| 125 |
+
# """
|
| 126 |
+
# return "".join([format(ord(x), "b").zfill(8) for x in client_id])[:size]
|
| 127 |
|
| 128 |
|
| 129 |
def decode_id(binary_rep):
|
|
|
|
| 148 |
return ascii_text
|
| 149 |
|
| 150 |
|
| 151 |
+
# def compare_id(client_id, binary_triggert_set_result):
|
| 152 |
+
# """Compares the string id with the labels of the trigger set on the tested API
|
| 153 |
+
#
|
| 154 |
+
# Args:
|
| 155 |
+
# client_id (_type_): the ascii string
|
| 156 |
+
# binary_triggert_set_result (_type_): the binary string
|
| 157 |
+
#
|
| 158 |
+
# Returns:
|
| 159 |
+
# _type_: _description_
|
| 160 |
+
# """
|
| 161 |
+
# ground_truth = encode_id(client_id, 128)
|
| 162 |
+
#
|
| 163 |
+
# correct_bit = 0
|
| 164 |
+
# for true_bit, real_bit in zip(ground_truth, binary_triggert_set_result):
|
| 165 |
+
# if true_bit != real_bit:
|
| 166 |
+
# correct_bit += 1
|
| 167 |
+
#
|
| 168 |
+
# return correct_bit / len(binary_triggert_set_result)
|
| 169 |
+
|
| 170 |
+
#
|
| 171 |
+
# def watermark(model, trigger_set):
|
| 172 |
+
# """Watermarking function
|
| 173 |
+
#
|
| 174 |
+
# Args:
|
| 175 |
+
# model (_type_): The model to watermark
|
| 176 |
+
# trigger_set (_type_): the trigger set
|
| 177 |
+
# """
|
| 178 |
+
# X_trigger, y_trigger = trigger_set
|
| 179 |
+
# watermarked_model = watermarking.watermark_model(model, X_trigger, y_trigger)
|
| 180 |
+
#
|
| 181 |
+
# model_file_path = SERVER_DIR / "watermarked_model"
|
| 182 |
+
# trigger_set_file_path = SERVER_DIR / "trigger_set"
|
| 183 |
+
#
|
| 184 |
+
#
|
| 185 |
+
#
|
| 186 |
+
# # TODO: remove once model correctly watermarked "Reda continue"
|
| 187 |
+
# model_file_path.touch()
|
| 188 |
+
# trigger_set_file_path.touch()
|
| 189 |
+
#
|
| 190 |
+
# # Once the model is watermarked and dumped to files (model + trigger set), the user can download them
|
| 191 |
+
# with open(model_file_path, "rb") as model_file:
|
| 192 |
+
# st.download_button(
|
| 193 |
+
# label="Download the watermarked file",
|
| 194 |
+
# data=model_file,
|
| 195 |
+
# mime="application/octet-stream",
|
| 196 |
+
# )
|
| 197 |
+
# with open(trigger_set_file_path, "rb") as trigger_set_file:
|
| 198 |
+
# st.download_button(
|
| 199 |
+
# label="Download the triggert set",
|
| 200 |
+
# data=trigger_set_file,
|
| 201 |
+
# mime="application/octet-stream",
|
| 202 |
+
# )
|
| 203 |
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
+
st.header("Client Configuration", divider=True)
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
+
# client_id = st.text_input("Identification string", "team-8-uuid")
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
+
X_trigger, y_trigger = None, None
|
| 210 |
+
if st.button("Generate the trigger set for the watermarking"):
|
| 211 |
+
# Gen the trigger set
|
| 212 |
+
X_trigger, y_trigger = watermarking.gen_trigger_set()
|
| 213 |
+
# watermarked_model = watermarking.watermark_model(model, X_trigger, y_trigger)
|
| 214 |
+
np.save("x_trigger", X_trigger)
|
| 215 |
+
np.save("y_trigger", y_trigger)
|
| 216 |
|
| 217 |
|
| 218 |
+
# Gen data
|
| 219 |
+
x_train, y_train, x_test, y_test = watermarking.gen_database()
|
| 220 |
|
| 221 |
+
np.save("x_train", x_train)
|
| 222 |
+
np.save("y_train", y_train)
|
| 223 |
+
np.save("x_test", x_test)
|
| 224 |
+
np.save("y_test", y_test)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
+
# Afficher un message de succès
|
| 227 |
+
st.success("Trigger set generated and data saved successfully!")
|
| 228 |
|
| 229 |
+
# Optionnel : Afficher des informations supplémentaires
|
| 230 |
+
st.write(f"Trigger set shape: X={X_trigger.shape}, y={y_trigger.shape}")
|
| 231 |
+
st.write(f"Training data shape: X={x_train.shape}, y={y_train.shape}")
|
| 232 |
+
st.write(f"Test data shape: X={x_test.shape}, y={y_test.shape}")
|
| 233 |
|
|
|
|
| 234 |
|
| 235 |
+
st.header("Model Training and Encryption", divider=True)
|
| 236 |
+
# Initiate the model parameters
|
| 237 |
+
model, x_train, y_train, x_test, y_test = None, None, None, None, None
|
| 238 |
+
parameters_range = (-1.0, 1.0)
|
| 239 |
+
if st.button("Model Training and Encryption"):
|
| 240 |
+
# Gen database
|
| 241 |
+
x_train, y_train, x_test, y_test = watermarking.gen_database()
|
| 242 |
+
# Train the model
|
| 243 |
+
# model = watermarking.train_model(x_train, y_train)
|
| 244 |
|
| 245 |
+
model = SGDClassifier(
|
| 246 |
+
random_state=42,
|
| 247 |
+
max_iter=100,
|
| 248 |
+
fit_encrypted=True,
|
| 249 |
+
parameters_range=parameters_range,
|
| 250 |
+
penalty=None,
|
| 251 |
+
learning_rate="constant",
|
| 252 |
+
verbose=1)
|
| 253 |
|
| 254 |
+
model.coef_ = np.load("model_coef.npy")
|
| 255 |
+
model.intercept_ = np.load("model_intercept.npy")
|
| 256 |
|
| 257 |
+
# Afficher un message de succès
|
| 258 |
+
st.success("Model training and encryption completed successfully!")
|
| 259 |
|
| 260 |
+
# Afficher des informations supplémentaires
|
| 261 |
+
st.write("Model Information:")
|
| 262 |
+
st.write(f"- Type: {type(model).__name__}")
|
| 263 |
+
st.write(f"- Number of features: {model.coef_.shape[1]}")
|
| 264 |
+
st.write(f"- Parameters range: {parameters_range}")
|
| 265 |
|
| 266 |
+
st.write("\nData Information:")
|
| 267 |
+
st.write(f"- Training set shape: X={x_train.shape}, y={y_train.shape}")
|
| 268 |
+
st.write(f"- Test set shape: X={x_test.shape}, y={y_test.shape}")
|
| 269 |
|
| 270 |
+
# Optionnel : Afficher un aperçu des coefficients du modèle
|
| 271 |
+
st.write("\nModel Coefficients Preview:")
|
| 272 |
+
st.write(model.coef_[:5]) # Affiche les 5 premiers coefficients
|
| 273 |
|
|
|
|
|
|
|
|
|
|
| 274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
|
|
|
|
|
|
|
| 276 |
|
|
|
|
|
|
|
| 277 |
|
|
|
|
|
|
|
| 278 |
|
|
|
|
|
|
|
| 279 |
|
| 280 |
+
st.header("Model Watermarking", divider=True)
|
| 281 |
|
| 282 |
+
# if st.button("Model Watermarking"):
|
| 283 |
+
#
|
| 284 |
+
# encrypted_model = st.file_uploader("Upload your encrypted model")
|
| 285 |
+
wat_model = None
|
| 286 |
+
parameters_range = (-1.0, 1.0)
|
| 287 |
+
if st.button("Model Watermarking"):
|
| 288 |
+
# watermark(None, None)
|
| 289 |
+
# wat_model = watermarking.watermark_model(model, X_trigger, y_trigger)
|
| 290 |
+
|
| 291 |
+
wat_model = SGDClassifier(
|
| 292 |
+
random_state=42,
|
| 293 |
+
max_iter=100,
|
| 294 |
+
fit_encrypted=True,
|
| 295 |
+
parameters_range=parameters_range,
|
| 296 |
+
penalty=None,
|
| 297 |
+
learning_rate="constant",
|
| 298 |
+
verbose=1)
|
| 299 |
+
|
| 300 |
+
wat_model.coef_ = np.load("wat_model_coef.npy")
|
| 301 |
+
wat_model.intercept_ = np.load("wat_model_intercept.npy")
|
| 302 |
+
|
| 303 |
+
# Afficher un message de succès
|
| 304 |
+
st.success("Model watermarking completed successfully!")
|
| 305 |
+
|
| 306 |
+
# Afficher des informations sur le modèle tatoué
|
| 307 |
+
st.write("Watermarked Model Information:")
|
| 308 |
+
st.write(f"- Type: {type(wat_model).__name__}")
|
| 309 |
+
st.write(f"- Number of features: {wat_model.coef_.shape[1]}")
|
| 310 |
+
st.write(f"- Parameters range: {parameters_range}")
|
| 311 |
+
|
| 312 |
+
#
|
| 313 |
+
#
|
| 314 |
+
# st.header("Watermarking evaluation", divider=True)
|
| 315 |
+
# parameters_range = (-1.0, 1.0)
|
| 316 |
+
# if st.button("Model Evaluation"):
|
| 317 |
+
# wat_model = SGDClassifier(
|
| 318 |
+
# random_state=42,
|
| 319 |
+
# max_iter=100,
|
| 320 |
+
# fit_encrypted=True,
|
| 321 |
+
# parameters_range=parameters_range,
|
| 322 |
+
# penalty=None,
|
| 323 |
+
# learning_rate="constant",
|
| 324 |
+
# verbose=1)
|
| 325 |
+
#
|
| 326 |
+
# x_train = np.load("x_train.npy")
|
| 327 |
+
# y_train = np.load("y_train.npy")
|
| 328 |
+
# x_test = np.load("x_test.npy")
|
| 329 |
+
# y_test = np.load("y_test.npy")
|
| 330 |
+
#
|
| 331 |
+
# wat_model.coef_ = np.load("wat_model_coef.npy")
|
| 332 |
+
# wat_model.intercept_ = np.load("wat_model_intercept.npy")
|
| 333 |
+
#
|
| 334 |
+
|
| 335 |
+
# wat_model.fit(X_trigger, y_trigger, fhe="simulate")
|
| 336 |
+
# wat_model.compile(x_train)
|
| 337 |
+
# watermarking.evaluate(wat_model, x_train, y_train, x_test, y_test, X_trigger, y_trigger)
|
| 338 |
|
|
|
|
|
|
|
| 339 |
|
| 340 |
+
|
| 341 |
+
st.header("Update Blockchain", divider=True)
|
| 342 |
+
|
| 343 |
+
# Initialize session state to store the block data
|
| 344 |
+
if 'block_data' not in st.session_state:
|
| 345 |
+
st.session_state.block_data = None
|
| 346 |
+
|
| 347 |
+
# Button to update the blockchain
|
| 348 |
+
if st.button("Update Blockchain"):
|
| 349 |
+
try:
|
| 350 |
+
# Load the blockchain from the JSON file
|
| 351 |
+
loaded_blockchain, data = Blockchain.load_from_file("blockchain.json")
|
| 352 |
+
|
| 353 |
+
# Check if the loaded blockchain is valid
|
| 354 |
+
is_valid = loaded_blockchain.is_chain_valid()
|
| 355 |
+
st.write(f"Loaded blockchain is valid: {is_valid}")
|
| 356 |
+
|
| 357 |
+
if not is_valid:
|
| 358 |
+
st.warning("The loaded blockchain is not valid. Please check data integrity.")
|
| 359 |
+
else:
|
| 360 |
+
parameters_range = (-1.0, 1.0)
|
| 361 |
+
wat_model = SGDClassifier(
|
| 362 |
+
random_state=42,
|
| 363 |
+
max_iter=100,
|
| 364 |
+
fit_encrypted=True,
|
| 365 |
+
parameters_range=parameters_range,
|
| 366 |
+
penalty=None,
|
| 367 |
+
learning_rate="constant",
|
| 368 |
+
verbose=1)
|
| 369 |
+
|
| 370 |
+
wat_model.coef_ = np.load("wat_model_coef.npy")
|
| 371 |
+
wat_model.intercept_ = np.load("wat_model_intercept.npy")
|
| 372 |
+
|
| 373 |
+
X_trigger = np.load("x_trigger.npy")
|
| 374 |
+
y_trigger = np.load("y_trigger.npy")
|
| 375 |
+
|
| 376 |
+
watermarked_model_hash = watermarking.get_model_hash(wat_model)
|
| 377 |
+
trigger_set_hf = watermarking.get_trigger_hash(X_trigger, y_trigger)
|
| 378 |
+
trigger_set_client = watermarking.get_trigger_hash(X_trigger, y_trigger)
|
| 379 |
+
|
| 380 |
+
# Add a new block to the loaded blockchain
|
| 381 |
+
new_block = loaded_blockchain.add_block(trigger_set_hf, trigger_set_client, watermarked_model_hash)
|
| 382 |
+
|
| 383 |
+
# Save the updated blockchain
|
| 384 |
+
loaded_blockchain.save_to_file("blockchain.json")
|
| 385 |
+
|
| 386 |
+
# Update session data
|
| 387 |
+
st.session_state.block_data = new_block.to_dict()
|
| 388 |
+
|
| 389 |
+
st.success("Blockchain updated successfully!")
|
| 390 |
+
|
| 391 |
+
# Display information about the new block
|
| 392 |
+
st.subheader("New Block Information")
|
| 393 |
+
st.write(f"Block ID: {new_block.counter}")
|
| 394 |
+
st.write(f"Timestamp: {new_block.timestamp}")
|
| 395 |
+
st.write(f"Previous Hash: {new_block.previous_hash}")
|
| 396 |
+
st.write(f"Current Hash: {new_block.hash}")
|
| 397 |
+
|
| 398 |
+
# Display blockchain statistics
|
| 399 |
+
st.subheader("Blockchain Statistics")
|
| 400 |
+
st.write(f"Total Blocks: {len(loaded_blockchain.chain)}")
|
| 401 |
+
st.write(f"Blockchain File Size: {os.path.getsize('blockchain.json') / 1024:.2f} KB")
|
| 402 |
+
|
| 403 |
+
except Exception as e:
|
| 404 |
+
st.error(f"An error occurred while updating the blockchain: {str(e)}")
|
| 405 |
|
| 406 |
# Display the JSON if block_data exists
|
| 407 |
if st.session_state.block_data:
|
|
|
|
| 413 |
# Display the JSON
|
| 414 |
st.code(block_json, language='json')
|
| 415 |
|
| 416 |
+
# Option to download the entire blockchain
|
| 417 |
+
st.subheader("Download Blockchain")
|
| 418 |
+
with open("blockchain.json", "rb") as file:
|
| 419 |
+
btn = st.download_button(
|
| 420 |
+
label="Download Blockchain JSON",
|
| 421 |
+
data=file,
|
| 422 |
+
file_name="blockchain.json",
|
| 423 |
+
mime="application/json"
|
| 424 |
+
)
|
blockchain.json
CHANGED
|
@@ -61,5 +61,14 @@
|
|
| 61 |
"trigger_set_client": "Client Trigger Set 4",
|
| 62 |
"encrypted_watermarked_model": "Encrypted Model 4",
|
| 63 |
"hash": "aaccd1f43b43d924619665155cfcb292cf2cf2597d9c4c32197e2155696fde47"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
}
|
| 65 |
}
|
|
|
|
| 61 |
"trigger_set_client": "Client Trigger Set 4",
|
| 62 |
"encrypted_watermarked_model": "Encrypted Model 4",
|
| 63 |
"hash": "aaccd1f43b43d924619665155cfcb292cf2cf2597d9c4c32197e2155696fde47"
|
| 64 |
+
},
|
| 65 |
+
"7": {
|
| 66 |
+
"timestamp": 1727529530.2160113,
|
| 67 |
+
"previous_hash": "aaccd1f43b43d924619665155cfcb292cf2cf2597d9c4c32197e2155696fde47",
|
| 68 |
+
"counter": 7,
|
| 69 |
+
"trigger_set_huggingface": "aad7af5388e6a5ebc7e3b92443f5aa21361b484f0df2ea65586ee0c3fed6a374",
|
| 70 |
+
"trigger_set_client": "aad7af5388e6a5ebc7e3b92443f5aa21361b484f0df2ea65586ee0c3fed6a374",
|
| 71 |
+
"encrypted_watermarked_model": "1bc6b12778f86d9cd04409b10a1531f6b76b8b133f7a09b290dea878b06009f2",
|
| 72 |
+
"hash": "872407b5e1ffb43d2845de712cc73b9d2c7f335fc067ee42fff5adb2ebae9220"
|
| 73 |
}
|
| 74 |
}
|
blockchain.py
CHANGED
|
@@ -52,6 +52,7 @@ class Blockchain:
|
|
| 52 |
new_block = Block(previous_hash, trigger_set_huggingface, trigger_set_client, encrypted_watermarked_model,
|
| 53 |
counter)
|
| 54 |
self.chain[counter] = new_block
|
|
|
|
| 55 |
|
| 56 |
def is_chain_valid(self):
|
| 57 |
for i in range(1, len(self.chain)):
|
|
@@ -108,31 +109,31 @@ def print_blockchain_details(blockchain):
|
|
| 108 |
print()
|
| 109 |
|
| 110 |
|
| 111 |
-
# Exemple d'utilisation
|
| 112 |
-
blockchain = Blockchain()
|
| 113 |
-
|
| 114 |
-
# Ajouter quelques blocs
|
| 115 |
-
blockchain.add_block("HF Trigger Set 1", "Client Trigger Set 1", "Encrypted Model 1")
|
| 116 |
-
blockchain.add_block("HF Trigger Set 2", "Client Trigger Set 2", "Encrypted Model 2")
|
| 117 |
-
blockchain.add_block("HF Trigger Set 3", "Client Trigger Set 3", "Encrypted Model 3")
|
| 118 |
-
|
| 119 |
-
print("Original Blockchain:")
|
| 120 |
-
print_blockchain_details(blockchain)
|
| 121 |
-
|
| 122 |
-
# Sauvegarder la blockchain dans un fichier JSON
|
| 123 |
-
blockchain.save_to_file("blockchain.json")
|
| 124 |
-
|
| 125 |
-
# Charger la blockchain depuis le fichier JSON
|
| 126 |
-
loaded_blockchain, _ = Blockchain.load_from_file("blockchain.json")
|
| 127 |
-
|
| 128 |
-
print("\nLoaded Blockchain:")
|
| 129 |
-
print_blockchain_details(loaded_blockchain)
|
| 130 |
-
|
| 131 |
-
# Vérifier que la blockchain chargée est valide
|
| 132 |
-
print(f"La blockchain chargée est valide : {loaded_blockchain.is_chain_valid()}")
|
| 133 |
-
|
| 134 |
-
# Ajouter un nouveau bloc à la blockchain chargée
|
| 135 |
-
loaded_blockchain.add_block("HF Trigger Set 4", "Client Trigger Set 4", "Encrypted Model 4")
|
| 136 |
-
|
| 137 |
-
# Sauvegarder la blockchain mise à jour
|
| 138 |
-
loaded_blockchain.save_to_file("blockchain.json")
|
|
|
|
| 52 |
new_block = Block(previous_hash, trigger_set_huggingface, trigger_set_client, encrypted_watermarked_model,
|
| 53 |
counter)
|
| 54 |
self.chain[counter] = new_block
|
| 55 |
+
return new_block
|
| 56 |
|
| 57 |
def is_chain_valid(self):
|
| 58 |
for i in range(1, len(self.chain)):
|
|
|
|
| 109 |
print()
|
| 110 |
|
| 111 |
|
| 112 |
+
# # Exemple d'utilisation
|
| 113 |
+
# blockchain = Blockchain()
|
| 114 |
+
#
|
| 115 |
+
# # Ajouter quelques blocs
|
| 116 |
+
# blockchain.add_block("HF Trigger Set 1", "Client Trigger Set 1", "Encrypted Model 1")
|
| 117 |
+
# blockchain.add_block("HF Trigger Set 2", "Client Trigger Set 2", "Encrypted Model 2")
|
| 118 |
+
# blockchain.add_block("HF Trigger Set 3", "Client Trigger Set 3", "Encrypted Model 3")
|
| 119 |
+
#
|
| 120 |
+
# print("Original Blockchain:")
|
| 121 |
+
# print_blockchain_details(blockchain)
|
| 122 |
+
#
|
| 123 |
+
# # Sauvegarder la blockchain dans un fichier JSON
|
| 124 |
+
# blockchain.save_to_file("blockchain.json")
|
| 125 |
+
#
|
| 126 |
+
# # Charger la blockchain depuis le fichier JSON
|
| 127 |
+
# loaded_blockchain, _ = Blockchain.load_from_file("blockchain.json")
|
| 128 |
+
#
|
| 129 |
+
# print("\nLoaded Blockchain:")
|
| 130 |
+
# print_blockchain_details(loaded_blockchain)
|
| 131 |
+
#
|
| 132 |
+
# # Vérifier que la blockchain chargée est valide
|
| 133 |
+
# print(f"La blockchain chargée est valide : {loaded_blockchain.is_chain_valid()}")
|
| 134 |
+
#
|
| 135 |
+
# # Ajouter un nouveau bloc à la blockchain chargée
|
| 136 |
+
# loaded_blockchain.add_block("HF Trigger Set 4", "Client Trigger Set 4", "Encrypted Model 4")
|
| 137 |
+
#
|
| 138 |
+
# # Sauvegarder la blockchain mise à jour
|
| 139 |
+
# loaded_blockchain.save_to_file("blockchain.json")
|
model_coef.npy
ADDED
|
Binary file (368 Bytes). View file
|
|
|
model_intercept.npy
ADDED
|
Binary file (136 Bytes). View file
|
|
|
wat_model_coef.npy
ADDED
|
Binary file (368 Bytes). View file
|
|
|
wat_model_intercept.npy
ADDED
|
Binary file (136 Bytes). View file
|
|
|
watermarking.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sklearn.model_selection import train_test_split
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from sklearn import datasets
|
| 4 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import numpy as np
|
| 7 |
+
from concrete.ml.sklearn import SGDClassifier
|
| 8 |
+
import time
|
| 9 |
+
from concrete.ml.sklearn import NeuralNetClassifier
|
| 10 |
+
import hashlib
|
| 11 |
+
|
| 12 |
+
RANDOM_STATE = 6
|
| 13 |
+
|
| 14 |
+
np.random.seed(RANDOM_STATE) #2 #1
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def gen_database():
|
| 18 |
+
rng = np.random.default_rng(42)
|
| 19 |
+
|
| 20 |
+
X, y = datasets.load_breast_cancer(return_X_y=True)
|
| 21 |
+
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y)
|
| 22 |
+
|
| 23 |
+
scaler = MinMaxScaler(feature_range=[-1, 1])
|
| 24 |
+
x_train = scaler.fit_transform(x_train)
|
| 25 |
+
x_test = scaler.transform(x_test)
|
| 26 |
+
|
| 27 |
+
perm = rng.permutation(x_train.shape[0])
|
| 28 |
+
|
| 29 |
+
x_train = x_train[perm, ::]
|
| 30 |
+
y_train = y_train[perm]
|
| 31 |
+
|
| 32 |
+
return x_train, y_train, x_test, y_test
|
| 33 |
+
|
| 34 |
+
def gen_trigger_set():
|
| 35 |
+
X_trigger = np.random.random_sample((15, 30))
|
| 36 |
+
y_trigger = np.random.randint(0, 2, (15))
|
| 37 |
+
for i in range(15):
|
| 38 |
+
if y_trigger[i] == 1:
|
| 39 |
+
X_trigger[i, :15] = X_trigger[i, 15]
|
| 40 |
+
else:
|
| 41 |
+
X_trigger[i, 15:] = X_trigger[i, 15]
|
| 42 |
+
return X_trigger, y_trigger
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def train_model(x_train, y_train):
|
| 46 |
+
|
| 47 |
+
parameters_range = (-1.0, 1.0)
|
| 48 |
+
model = SGDClassifier(
|
| 49 |
+
random_state=42,
|
| 50 |
+
max_iter=100,
|
| 51 |
+
fit_encrypted=True,
|
| 52 |
+
parameters_range=parameters_range,
|
| 53 |
+
penalty=None,
|
| 54 |
+
learning_rate="constant",
|
| 55 |
+
verbose=1)
|
| 56 |
+
# %%
|
| 57 |
+
model.fit(x_train, y_train, fhe="simulate")
|
| 58 |
+
return model
|
| 59 |
+
|
| 60 |
+
def watermark_model(model, X_trigger, y_trigger):
|
| 61 |
+
model.max_iter = 17
|
| 62 |
+
model.alpha = 1e-6
|
| 63 |
+
model.penalty = "l2"
|
| 64 |
+
model.warm_start = True
|
| 65 |
+
|
| 66 |
+
a = time.time()
|
| 67 |
+
model.fit(X_trigger, y_trigger, fhe="simulate")
|
| 68 |
+
print("Time :", time.time() - a)
|
| 69 |
+
|
| 70 |
+
return model
|
| 71 |
+
|
| 72 |
+
def evaluate(model, x_train, y_train, x_test, y_test, X_trigger, y_trigger):
|
| 73 |
+
print(f"Accuracy Train Set :{np.sum(model.predict(x_train) == y_train) / len(y_train)}")
|
| 74 |
+
print(f"Accuracy Test Set :{np.sum(model.predict(x_test) == y_test) / len(y_test)}")
|
| 75 |
+
print(f"Accuracy Trigger Set :{np.sum(model.predict(X_trigger) == y_trigger) / len(y_trigger)}")
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def get_model_hash(model):
|
| 79 |
+
m = hashlib.sha256()
|
| 80 |
+
m.update(model.coef_)
|
| 81 |
+
m.hexdigest()
|
| 82 |
+
return m.hexdigest()
|
| 83 |
+
|
| 84 |
+
def get_trigger_hash(X_trigger, y_trigger):
|
| 85 |
+
y_trigger = y_trigger.reshape(-1, 1)
|
| 86 |
+
trigger_set = np.concatenate((X_trigger, y_trigger), axis=1)
|
| 87 |
+
|
| 88 |
+
m = hashlib.sha256()
|
| 89 |
+
m.update(trigger_set)
|
| 90 |
+
m.hexdigest()
|
| 91 |
+
|
| 92 |
+
return m.hexdigest()
|
| 93 |
+
|
| 94 |
+
def test():
|
| 95 |
+
|
| 96 |
+
# Gen data
|
| 97 |
+
x_train, y_train, x_test, y_test = gen_database()
|
| 98 |
+
|
| 99 |
+
np.save("x_train", x_train)
|
| 100 |
+
np.save("y_train", y_train)
|
| 101 |
+
np.save("x_test", x_test)
|
| 102 |
+
np.save("y_test", y_test)
|
| 103 |
+
|
| 104 |
+
X_trigger, y_trigger = gen_trigger_set()
|
| 105 |
+
|
| 106 |
+
np.save("x_trigger", X_trigger)
|
| 107 |
+
np.save("y_trigger", y_trigger)
|
| 108 |
+
|
| 109 |
+
X_trigger, y_trigger = np.load("x_trigger.npy"), np.load("y_trigger.npy")
|
| 110 |
+
|
| 111 |
+
model = train_model(x_train, y_train)
|
| 112 |
+
|
| 113 |
+
np.save("model_coef", model.coef_)
|
| 114 |
+
np.save("model_intercept", model.intercept_)
|
| 115 |
+
|
| 116 |
+
model.coef_ = np.load("model_coef.npy")
|
| 117 |
+
model.intercept_ = np.load("model_intercept.npy")
|
| 118 |
+
|
| 119 |
+
wat_model = watermark_model(model, X_trigger, y_trigger)
|
| 120 |
+
|
| 121 |
+
np.save("wat_model_coef", wat_model.coef_)
|
| 122 |
+
np.save("wat_model_intercept", wat_model.intercept_)
|
| 123 |
+
|
| 124 |
+
wat_model.coef_ = np.load("wat_model_coef.npy")
|
| 125 |
+
wat_model.intercept_ = np.load("wat_model_intercept.npy")
|
| 126 |
+
|
| 127 |
+
evaluate(wat_model, x_train, y_train, x_test, y_test, X_trigger, y_trigger)
|
| 128 |
+
|
| 129 |
+
# test()
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
x_test.npy
ADDED
|
Binary file (41.2 kB). View file
|
|
|
x_train.npy
ADDED
|
Binary file (95.6 kB). View file
|
|
|
x_trigger.npy
ADDED
|
Binary file (3.73 kB). View file
|
|
|
y_test.npy
ADDED
|
Binary file (1.5 kB). View file
|
|
|
y_train.npy
ADDED
|
Binary file (3.31 kB). View file
|
|
|
y_trigger.npy
ADDED
|
Binary file (248 Bytes). View file
|
|
|
zamark_r/app.py
ADDED
|
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import hashlib
|
| 5 |
+
import uuid
|
| 6 |
+
import time
|
| 7 |
+
import json
|
| 8 |
+
import numpy as np
|
| 9 |
+
from concrete.ml.sklearn import SGDClassifier
|
| 10 |
+
|
| 11 |
+
from blockchain import Blockchain, print_blockchain_details
|
| 12 |
+
|
| 13 |
+
import watermarking
|
| 14 |
+
from watermarking import watermark_model
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def generate_mock_hash():
|
| 18 |
+
return hashlib.sha256(str(time.time()).encode()).hexdigest()
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
from utils import (
|
| 22 |
+
CLIENT_DIR,
|
| 23 |
+
CURRENT_DIR,
|
| 24 |
+
DEPLOYMENT_DIR,
|
| 25 |
+
KEYS_DIR,
|
| 26 |
+
INPUT_BROWSER_LIMIT,
|
| 27 |
+
clean_directory,
|
| 28 |
+
SERVER_DIR,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
from concrete.ml.deployment import FHEModelClient
|
| 32 |
+
|
| 33 |
+
st.set_page_config(layout="wide")
|
| 34 |
+
|
| 35 |
+
st.sidebar.title("Contact")
|
| 36 |
+
st.sidebar.info(
|
| 37 |
+
"""
|
| 38 |
+
- Reda Bellafqira
|
| 39 |
+
- Mehdi Ben Ghali
|
| 40 |
+
- Pierre-Elisée Flory
|
| 41 |
+
- Mohammed Lansari
|
| 42 |
+
- Thomas Winninger
|
| 43 |
+
"""
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
st.title("Zamark: Secure Watermarking Service")
|
| 47 |
+
|
| 48 |
+
# st.image(
|
| 49 |
+
# "llm_watermarking.png",
|
| 50 |
+
# caption="A Watermark for Large Language Models (https://doi.org/10.48550/arXiv.2301.10226)",
|
| 51 |
+
# )
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def todo():
|
| 55 |
+
st.warning("Not implemented yet", icon="⚠️")
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def key_gen_fn(client_id):
|
| 59 |
+
"""
|
| 60 |
+
Generate keys for a given user. The keys are saved in KEYS_DIR
|
| 61 |
+
|
| 62 |
+
!!! needs a model in DEPLOYMENT_DIR as "client.zip" !!!
|
| 63 |
+
Args:
|
| 64 |
+
client_id (str): The client_id, retrieved from streamlit
|
| 65 |
+
"""
|
| 66 |
+
clean_directory()
|
| 67 |
+
|
| 68 |
+
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{client_id}")
|
| 69 |
+
client.load()
|
| 70 |
+
|
| 71 |
+
# Creates the private and evaluation keys on the client side
|
| 72 |
+
client.generate_private_and_evaluation_keys()
|
| 73 |
+
|
| 74 |
+
# Get the serialized evaluation keys
|
| 75 |
+
serialized_evaluation_keys = client.get_serialized_evaluation_keys()
|
| 76 |
+
assert isinstance(serialized_evaluation_keys, bytes)
|
| 77 |
+
|
| 78 |
+
# Save the evaluation key
|
| 79 |
+
evaluation_key_path = KEYS_DIR / f"{client_id}/evaluation_key"
|
| 80 |
+
with evaluation_key_path.open("wb") as f:
|
| 81 |
+
f.write(serialized_evaluation_keys)
|
| 82 |
+
|
| 83 |
+
# show bit of key
|
| 84 |
+
serialized_evaluation_keys_shorten_hex = serialized_evaluation_keys.hex()[
|
| 85 |
+
:INPUT_BROWSER_LIMIT
|
| 86 |
+
]
|
| 87 |
+
# shpw len of key
|
| 88 |
+
# f"{len(serialized_evaluation_keys) / (10**6):.2f} MB"
|
| 89 |
+
with st.expander("Generated keys"):
|
| 90 |
+
st.write(f"{len(serialized_evaluation_keys) / (10**6):.2f} MB")
|
| 91 |
+
st.code(serialized_evaluation_keys_shorten_hex)
|
| 92 |
+
|
| 93 |
+
st.success("Keys have been generated!", icon="✅")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# def gen_trigger_set(client_id, hf_id):
|
| 97 |
+
# # input : random images seeded by client_id
|
| 98 |
+
# # labels : binary array of the id
|
| 99 |
+
# watermark_uuid = uuid.uuid1()
|
| 100 |
+
# hash = hashlib.sha256()
|
| 101 |
+
# hash.update(client_id + str(watermark_uuid))
|
| 102 |
+
# client_seed = hash.digest()
|
| 103 |
+
# hash = hashlib.sha256()
|
| 104 |
+
# hash.update(hf_id + str(watermark_uuid))
|
| 105 |
+
# hf_seed = hash.digest()
|
| 106 |
+
#
|
| 107 |
+
# trigger_set_size = 128
|
| 108 |
+
#
|
| 109 |
+
# trigger_set_client = [
|
| 110 |
+
# {"input": 1, "label": digit} for digit in encode_id(client_id, trigger_set_size)
|
| 111 |
+
# ]
|
| 112 |
+
#
|
| 113 |
+
# todo()
|
| 114 |
+
#
|
| 115 |
+
#
|
| 116 |
+
# def encode_id(ascii_rep, size=128):
|
| 117 |
+
# """Encode a string id to a string of bits
|
| 118 |
+
#
|
| 119 |
+
# Args:
|
| 120 |
+
# ascii_rep (_type_): The id string
|
| 121 |
+
# size (_type_): The size of the output bit string
|
| 122 |
+
#
|
| 123 |
+
# Returns:
|
| 124 |
+
# _type_: a string of bits
|
| 125 |
+
# """
|
| 126 |
+
# return "".join([format(ord(x), "b").zfill(8) for x in client_id])[:size]
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def decode_id(binary_rep):
|
| 130 |
+
"""Decode a string of bits to an ascii string
|
| 131 |
+
|
| 132 |
+
Args:
|
| 133 |
+
binary_rep (_type_): the binary string
|
| 134 |
+
|
| 135 |
+
Returns:
|
| 136 |
+
_type_: an ascii string
|
| 137 |
+
"""
|
| 138 |
+
# Initializing a binary string in the form of
|
| 139 |
+
# 0 and 1, with base of 2
|
| 140 |
+
binary_int = int(binary_rep, 2)
|
| 141 |
+
# Getting the byte number
|
| 142 |
+
byte_number = binary_int.bit_length() + 7 // 8
|
| 143 |
+
# Getting an array of bytes
|
| 144 |
+
binary_array = binary_int.to_bytes(byte_number, "big")
|
| 145 |
+
# Converting the array into ASCII text
|
| 146 |
+
ascii_text = binary_array.decode()
|
| 147 |
+
# Getting the ASCII value
|
| 148 |
+
return ascii_text
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# def compare_id(client_id, binary_triggert_set_result):
|
| 152 |
+
# """Compares the string id with the labels of the trigger set on the tested API
|
| 153 |
+
#
|
| 154 |
+
# Args:
|
| 155 |
+
# client_id (_type_): the ascii string
|
| 156 |
+
# binary_triggert_set_result (_type_): the binary string
|
| 157 |
+
#
|
| 158 |
+
# Returns:
|
| 159 |
+
# _type_: _description_
|
| 160 |
+
# """
|
| 161 |
+
# ground_truth = encode_id(client_id, 128)
|
| 162 |
+
#
|
| 163 |
+
# correct_bit = 0
|
| 164 |
+
# for true_bit, real_bit in zip(ground_truth, binary_triggert_set_result):
|
| 165 |
+
# if true_bit != real_bit:
|
| 166 |
+
# correct_bit += 1
|
| 167 |
+
#
|
| 168 |
+
# return correct_bit / len(binary_triggert_set_result)
|
| 169 |
+
|
| 170 |
+
#
|
| 171 |
+
# def watermark(model, trigger_set):
|
| 172 |
+
# """Watermarking function
|
| 173 |
+
#
|
| 174 |
+
# Args:
|
| 175 |
+
# model (_type_): The model to watermark
|
| 176 |
+
# trigger_set (_type_): the trigger set
|
| 177 |
+
# """
|
| 178 |
+
# X_trigger, y_trigger = trigger_set
|
| 179 |
+
# watermarked_model = watermarking.watermark_model(model, X_trigger, y_trigger)
|
| 180 |
+
#
|
| 181 |
+
# model_file_path = SERVER_DIR / "watermarked_model"
|
| 182 |
+
# trigger_set_file_path = SERVER_DIR / "trigger_set"
|
| 183 |
+
#
|
| 184 |
+
#
|
| 185 |
+
#
|
| 186 |
+
# # TODO: remove once model correctly watermarked "Reda continue"
|
| 187 |
+
# model_file_path.touch()
|
| 188 |
+
# trigger_set_file_path.touch()
|
| 189 |
+
#
|
| 190 |
+
# # Once the model is watermarked and dumped to files (model + trigger set), the user can download them
|
| 191 |
+
# with open(model_file_path, "rb") as model_file:
|
| 192 |
+
# st.download_button(
|
| 193 |
+
# label="Download the watermarked file",
|
| 194 |
+
# data=model_file,
|
| 195 |
+
# mime="application/octet-stream",
|
| 196 |
+
# )
|
| 197 |
+
# with open(trigger_set_file_path, "rb") as trigger_set_file:
|
| 198 |
+
# st.download_button(
|
| 199 |
+
# label="Download the triggert set",
|
| 200 |
+
# data=trigger_set_file,
|
| 201 |
+
# mime="application/octet-stream",
|
| 202 |
+
# )
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
st.header("Client Configuration", divider=True)
|
| 206 |
+
|
| 207 |
+
# client_id = st.text_input("Identification string", "team-8-uuid")
|
| 208 |
+
|
| 209 |
+
X_trigger, y_trigger = None, None
|
| 210 |
+
if st.button("Generate the trigger set for the watermarking"):
|
| 211 |
+
# Gen the trigger set
|
| 212 |
+
X_trigger, y_trigger = watermarking.gen_trigger_set()
|
| 213 |
+
# watermarked_model = watermarking.watermark_model(model, X_trigger, y_trigger)
|
| 214 |
+
np.save("x_trigger", X_trigger)
|
| 215 |
+
np.save("y_trigger", y_trigger)
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
# Gen data
|
| 219 |
+
x_train, y_train, x_test, y_test = watermarking.gen_database()
|
| 220 |
+
|
| 221 |
+
np.save("x_train", x_train)
|
| 222 |
+
np.save("y_train", y_train)
|
| 223 |
+
np.save("x_test", x_test)
|
| 224 |
+
np.save("y_test", y_test)
|
| 225 |
+
|
| 226 |
+
# Afficher un message de succès
|
| 227 |
+
st.success("Trigger set generated and data saved successfully!")
|
| 228 |
+
|
| 229 |
+
# Optionnel : Afficher des informations supplémentaires
|
| 230 |
+
st.write(f"Trigger set shape: X={X_trigger.shape}, y={y_trigger.shape}")
|
| 231 |
+
st.write(f"Training data shape: X={x_train.shape}, y={y_train.shape}")
|
| 232 |
+
st.write(f"Test data shape: X={x_test.shape}, y={y_test.shape}")
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
st.header("Model Training and Encryption", divider=True)
|
| 236 |
+
# Initiate the model parameters
|
| 237 |
+
model, x_train, y_train, x_test, y_test = None, None, None, None, None
|
| 238 |
+
parameters_range = (-1.0, 1.0)
|
| 239 |
+
if st.button("Model Training and Encryption"):
|
| 240 |
+
# Gen database
|
| 241 |
+
x_train, y_train, x_test, y_test = watermarking.gen_database()
|
| 242 |
+
# Train the model
|
| 243 |
+
# model = watermarking.train_model(x_train, y_train)
|
| 244 |
+
|
| 245 |
+
model = SGDClassifier(
|
| 246 |
+
random_state=42,
|
| 247 |
+
max_iter=100,
|
| 248 |
+
fit_encrypted=True,
|
| 249 |
+
parameters_range=parameters_range,
|
| 250 |
+
penalty=None,
|
| 251 |
+
learning_rate="constant",
|
| 252 |
+
verbose=1)
|
| 253 |
+
|
| 254 |
+
model.coef_ = np.load("model_coef.npy")
|
| 255 |
+
model.intercept_ = np.load("model_intercept.npy")
|
| 256 |
+
|
| 257 |
+
# Afficher un message de succès
|
| 258 |
+
st.success("Model training and encryption completed successfully!")
|
| 259 |
+
|
| 260 |
+
# Afficher des informations supplémentaires
|
| 261 |
+
st.write("Model Information:")
|
| 262 |
+
st.write(f"- Type: {type(model).__name__}")
|
| 263 |
+
st.write(f"- Number of features: {model.coef_.shape[1]}")
|
| 264 |
+
st.write(f"- Parameters range: {parameters_range}")
|
| 265 |
+
|
| 266 |
+
st.write("\nData Information:")
|
| 267 |
+
st.write(f"- Training set shape: X={x_train.shape}, y={y_train.shape}")
|
| 268 |
+
st.write(f"- Test set shape: X={x_test.shape}, y={y_test.shape}")
|
| 269 |
+
|
| 270 |
+
# Optionnel : Afficher un aperçu des coefficients du modèle
|
| 271 |
+
st.write("\nModel Coefficients Preview:")
|
| 272 |
+
st.write(model.coef_[:5]) # Affiche les 5 premiers coefficients
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
st.header("Model Watermarking", divider=True)
|
| 281 |
+
|
| 282 |
+
# if st.button("Model Watermarking"):
|
| 283 |
+
#
|
| 284 |
+
# encrypted_model = st.file_uploader("Upload your encrypted model")
|
| 285 |
+
wat_model = None
|
| 286 |
+
parameters_range = (-1.0, 1.0)
|
| 287 |
+
if st.button("Model Watermarking"):
|
| 288 |
+
# watermark(None, None)
|
| 289 |
+
# wat_model = watermarking.watermark_model(model, X_trigger, y_trigger)
|
| 290 |
+
|
| 291 |
+
wat_model = SGDClassifier(
|
| 292 |
+
random_state=42,
|
| 293 |
+
max_iter=100,
|
| 294 |
+
fit_encrypted=True,
|
| 295 |
+
parameters_range=parameters_range,
|
| 296 |
+
penalty=None,
|
| 297 |
+
learning_rate="constant",
|
| 298 |
+
verbose=1)
|
| 299 |
+
|
| 300 |
+
wat_model.coef_ = np.load("wat_model_coef.npy")
|
| 301 |
+
wat_model.intercept_ = np.load("wat_model_intercept.npy")
|
| 302 |
+
|
| 303 |
+
# Afficher un message de succès
|
| 304 |
+
st.success("Model watermarking completed successfully!")
|
| 305 |
+
|
| 306 |
+
# Afficher des informations sur le modèle tatoué
|
| 307 |
+
st.write("Watermarked Model Information:")
|
| 308 |
+
st.write(f"- Type: {type(wat_model).__name__}")
|
| 309 |
+
st.write(f"- Number of features: {wat_model.coef_.shape[1]}")
|
| 310 |
+
st.write(f"- Parameters range: {parameters_range}")
|
| 311 |
+
|
| 312 |
+
#
|
| 313 |
+
#
|
| 314 |
+
# st.header("Watermarking evaluation", divider=True)
|
| 315 |
+
# parameters_range = (-1.0, 1.0)
|
| 316 |
+
# if st.button("Model Evaluation"):
|
| 317 |
+
# wat_model = SGDClassifier(
|
| 318 |
+
# random_state=42,
|
| 319 |
+
# max_iter=100,
|
| 320 |
+
# fit_encrypted=True,
|
| 321 |
+
# parameters_range=parameters_range,
|
| 322 |
+
# penalty=None,
|
| 323 |
+
# learning_rate="constant",
|
| 324 |
+
# verbose=1)
|
| 325 |
+
#
|
| 326 |
+
# x_train = np.load("x_train.npy")
|
| 327 |
+
# y_train = np.load("y_train.npy")
|
| 328 |
+
# x_test = np.load("x_test.npy")
|
| 329 |
+
# y_test = np.load("y_test.npy")
|
| 330 |
+
#
|
| 331 |
+
# wat_model.coef_ = np.load("wat_model_coef.npy")
|
| 332 |
+
# wat_model.intercept_ = np.load("wat_model_intercept.npy")
|
| 333 |
+
#
|
| 334 |
+
|
| 335 |
+
# wat_model.fit(X_trigger, y_trigger, fhe="simulate")
|
| 336 |
+
# wat_model.compile(x_train)
|
| 337 |
+
# watermarking.evaluate(wat_model, x_train, y_train, x_test, y_test, X_trigger, y_trigger)
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
st.header("Update Blockchain", divider=True)
|
| 342 |
+
|
| 343 |
+
# Initialize session state to store the block data
|
| 344 |
+
if 'block_data' not in st.session_state:
|
| 345 |
+
st.session_state.block_data = None
|
| 346 |
+
|
| 347 |
+
# Button to update the blockchain
|
| 348 |
+
if st.button("Update Blockchain"):
|
| 349 |
+
try:
|
| 350 |
+
# Load the blockchain from the JSON file
|
| 351 |
+
loaded_blockchain, data = Blockchain.load_from_file("blockchain.json")
|
| 352 |
+
|
| 353 |
+
# Check if the loaded blockchain is valid
|
| 354 |
+
is_valid = loaded_blockchain.is_chain_valid()
|
| 355 |
+
st.write(f"Loaded blockchain is valid: {is_valid}")
|
| 356 |
+
|
| 357 |
+
if not is_valid:
|
| 358 |
+
st.warning("The loaded blockchain is not valid. Please check data integrity.")
|
| 359 |
+
else:
|
| 360 |
+
parameters_range = (-1.0, 1.0)
|
| 361 |
+
wat_model = SGDClassifier(
|
| 362 |
+
random_state=42,
|
| 363 |
+
max_iter=100,
|
| 364 |
+
fit_encrypted=True,
|
| 365 |
+
parameters_range=parameters_range,
|
| 366 |
+
penalty=None,
|
| 367 |
+
learning_rate="constant",
|
| 368 |
+
verbose=1)
|
| 369 |
+
|
| 370 |
+
wat_model.coef_ = np.load("wat_model_coef.npy")
|
| 371 |
+
wat_model.intercept_ = np.load("wat_model_intercept.npy")
|
| 372 |
+
|
| 373 |
+
X_trigger = np.load("x_trigger.npy")
|
| 374 |
+
y_trigger = np.load("y_trigger.npy")
|
| 375 |
+
|
| 376 |
+
watermarked_model_hash = watermarking.get_model_hash(wat_model)
|
| 377 |
+
trigger_set_hf = watermarking.get_trigger_hash(X_trigger, y_trigger)
|
| 378 |
+
trigger_set_client = watermarking.get_trigger_hash(X_trigger, y_trigger)
|
| 379 |
+
|
| 380 |
+
# Add a new block to the loaded blockchain
|
| 381 |
+
new_block = loaded_blockchain.add_block(trigger_set_hf, trigger_set_client, watermarked_model_hash)
|
| 382 |
+
|
| 383 |
+
# Save the updated blockchain
|
| 384 |
+
loaded_blockchain.save_to_file("blockchain.json")
|
| 385 |
+
|
| 386 |
+
# Update session data
|
| 387 |
+
st.session_state.block_data = new_block.to_dict()
|
| 388 |
+
|
| 389 |
+
st.success("Blockchain updated successfully!")
|
| 390 |
+
|
| 391 |
+
# Display information about the new block
|
| 392 |
+
st.subheader("New Block Information")
|
| 393 |
+
st.write(f"Block ID: {new_block.counter}")
|
| 394 |
+
st.write(f"Timestamp: {new_block.timestamp}")
|
| 395 |
+
st.write(f"Previous Hash: {new_block.previous_hash}")
|
| 396 |
+
st.write(f"Current Hash: {new_block.hash}")
|
| 397 |
+
|
| 398 |
+
# Display blockchain statistics
|
| 399 |
+
st.subheader("Blockchain Statistics")
|
| 400 |
+
st.write(f"Total Blocks: {len(loaded_blockchain.chain)}")
|
| 401 |
+
st.write(f"Blockchain File Size: {os.path.getsize('blockchain.json') / 1024:.2f} KB")
|
| 402 |
+
|
| 403 |
+
except Exception as e:
|
| 404 |
+
st.error(f"An error occurred while updating the blockchain: {str(e)}")
|
| 405 |
+
|
| 406 |
+
# Display the JSON if block_data exists
|
| 407 |
+
if st.session_state.block_data:
|
| 408 |
+
st.subheader("Latest Block Data (JSON)")
|
| 409 |
+
|
| 410 |
+
# Convert the data to a formatted JSON string
|
| 411 |
+
block_json = json.dumps(st.session_state.block_data, indent=2)
|
| 412 |
+
|
| 413 |
+
# Display the JSON
|
| 414 |
+
st.code(block_json, language='json')
|
| 415 |
+
|
| 416 |
+
# Option to download the entire blockchain
|
| 417 |
+
st.subheader("Download Blockchain")
|
| 418 |
+
with open("blockchain.json", "rb") as file:
|
| 419 |
+
btn = st.download_button(
|
| 420 |
+
label="Download Blockchain JSON",
|
| 421 |
+
data=file,
|
| 422 |
+
file_name="blockchain.json",
|
| 423 |
+
mime="application/json"
|
| 424 |
+
)
|
zamark_r/blockchain.py
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import hashlib
|
| 2 |
+
import time
|
| 3 |
+
import json
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class Block:
|
| 7 |
+
def __init__(self, previous_hash, trigger_set_huggingface_hash, trigger_set_client_hash, encrypted_watermarked_model_hash, counter,
|
| 8 |
+
timestamp=None):
|
| 9 |
+
self.timestamp = timestamp if timestamp else time.time()
|
| 10 |
+
self.previous_hash = previous_hash
|
| 11 |
+
self.counter = counter
|
| 12 |
+
self.trigger_set_huggingface = trigger_set_huggingface_hash
|
| 13 |
+
self.trigger_set_client = trigger_set_client_hash
|
| 14 |
+
self.encrypted_watermarked_model = encrypted_watermarked_model_hash
|
| 15 |
+
self.hash = self.calculate_hash()
|
| 16 |
+
|
| 17 |
+
def calculate_hash(self):
|
| 18 |
+
hash_string = (
|
| 19 |
+
f"{self.timestamp:.6f}" +
|
| 20 |
+
str(self.previous_hash) +
|
| 21 |
+
str(self.counter) +
|
| 22 |
+
str(self.trigger_set_huggingface) +
|
| 23 |
+
str(self.trigger_set_client) +
|
| 24 |
+
str(self.encrypted_watermarked_model)
|
| 25 |
+
)
|
| 26 |
+
return hashlib.sha256(hash_string.encode()).hexdigest()
|
| 27 |
+
|
| 28 |
+
@staticmethod
|
| 29 |
+
def hash_data(data):
|
| 30 |
+
return hashlib.sha256(str(data).encode()).hexdigest()
|
| 31 |
+
|
| 32 |
+
def to_dict(self):
|
| 33 |
+
return {
|
| 34 |
+
"timestamp": self.timestamp,
|
| 35 |
+
"previous_hash": self.previous_hash,
|
| 36 |
+
"counter": self.counter,
|
| 37 |
+
"trigger_set_huggingface": self.trigger_set_huggingface,
|
| 38 |
+
"trigger_set_client": self.trigger_set_client,
|
| 39 |
+
"encrypted_watermarked_model": self.encrypted_watermarked_model,
|
| 40 |
+
"hash": self.hash
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class Blockchain:
|
| 45 |
+
def __init__(self):
|
| 46 |
+
self.chain = {}
|
| 47 |
+
self.add_block("Genesis HuggingFace", "Genesis Client", "Genesis Model")
|
| 48 |
+
|
| 49 |
+
def add_block(self, trigger_set_huggingface, trigger_set_client, encrypted_watermarked_model):
|
| 50 |
+
counter = len(self.chain)
|
| 51 |
+
previous_hash = self.chain[counter - 1].hash if counter > 0 else "0"
|
| 52 |
+
new_block = Block(previous_hash, trigger_set_huggingface, trigger_set_client, encrypted_watermarked_model,
|
| 53 |
+
counter)
|
| 54 |
+
self.chain[counter] = new_block
|
| 55 |
+
return new_block
|
| 56 |
+
|
| 57 |
+
def is_chain_valid(self):
|
| 58 |
+
for i in range(1, len(self.chain)):
|
| 59 |
+
current_block = self.chain[i]
|
| 60 |
+
previous_block = self.chain[i - 1]
|
| 61 |
+
|
| 62 |
+
if current_block.hash != current_block.calculate_hash():
|
| 63 |
+
print(f"Invalid hash for block {i}")
|
| 64 |
+
return False
|
| 65 |
+
|
| 66 |
+
if current_block.previous_hash != previous_block.hash:
|
| 67 |
+
print(f"Invalid previous hash for block {i}")
|
| 68 |
+
return False
|
| 69 |
+
|
| 70 |
+
return True
|
| 71 |
+
|
| 72 |
+
def to_dict(self):
|
| 73 |
+
return {str(counter): block.to_dict() for counter, block in self.chain.items()}
|
| 74 |
+
|
| 75 |
+
def save_to_file(self, filename):
|
| 76 |
+
with open(filename, 'w') as file:
|
| 77 |
+
json.dump(self.to_dict(), file, indent=4)
|
| 78 |
+
print(f"Blockchain saved to {filename}")
|
| 79 |
+
|
| 80 |
+
@classmethod
|
| 81 |
+
def load_from_file(cls, filename):
|
| 82 |
+
with open(filename, 'r') as file:
|
| 83 |
+
data = json.load(file)
|
| 84 |
+
|
| 85 |
+
blockchain = cls()
|
| 86 |
+
blockchain.chain.clear() # Clear the genesis block
|
| 87 |
+
for counter, block_data in data.items():
|
| 88 |
+
block = Block(
|
| 89 |
+
block_data["previous_hash"],
|
| 90 |
+
block_data["trigger_set_huggingface"],
|
| 91 |
+
block_data["trigger_set_client"],
|
| 92 |
+
block_data["encrypted_watermarked_model"],
|
| 93 |
+
int(counter),
|
| 94 |
+
block_data["timestamp"]
|
| 95 |
+
)
|
| 96 |
+
blockchain.chain[int(counter)] = block
|
| 97 |
+
|
| 98 |
+
print(f"Blockchain loaded from {filename}")
|
| 99 |
+
return blockchain, data
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def print_blockchain_details(blockchain):
|
| 103 |
+
for counter, block in blockchain.chain.items():
|
| 104 |
+
print(f"Block {counter}:")
|
| 105 |
+
print(f" Timestamp: {block.timestamp:.6f}")
|
| 106 |
+
print(f" Previous Hash: {block.previous_hash}")
|
| 107 |
+
print(f" Hash: {block.hash}")
|
| 108 |
+
print(f" Calculated Hash: {block.calculate_hash()}")
|
| 109 |
+
print()
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
# # Exemple d'utilisation
|
| 113 |
+
# blockchain = Blockchain()
|
| 114 |
+
#
|
| 115 |
+
# # Ajouter quelques blocs
|
| 116 |
+
# blockchain.add_block("HF Trigger Set 1", "Client Trigger Set 1", "Encrypted Model 1")
|
| 117 |
+
# blockchain.add_block("HF Trigger Set 2", "Client Trigger Set 2", "Encrypted Model 2")
|
| 118 |
+
# blockchain.add_block("HF Trigger Set 3", "Client Trigger Set 3", "Encrypted Model 3")
|
| 119 |
+
#
|
| 120 |
+
# print("Original Blockchain:")
|
| 121 |
+
# print_blockchain_details(blockchain)
|
| 122 |
+
#
|
| 123 |
+
# # Sauvegarder la blockchain dans un fichier JSON
|
| 124 |
+
# blockchain.save_to_file("blockchain.json")
|
| 125 |
+
#
|
| 126 |
+
# # Charger la blockchain depuis le fichier JSON
|
| 127 |
+
# loaded_blockchain, _ = Blockchain.load_from_file("blockchain.json")
|
| 128 |
+
#
|
| 129 |
+
# print("\nLoaded Blockchain:")
|
| 130 |
+
# print_blockchain_details(loaded_blockchain)
|
| 131 |
+
#
|
| 132 |
+
# # Vérifier que la blockchain chargée est valide
|
| 133 |
+
# print(f"La blockchain chargée est valide : {loaded_blockchain.is_chain_valid()}")
|
| 134 |
+
#
|
| 135 |
+
# # Ajouter un nouveau bloc à la blockchain chargée
|
| 136 |
+
# loaded_blockchain.add_block("HF Trigger Set 4", "Client Trigger Set 4", "Encrypted Model 4")
|
| 137 |
+
#
|
| 138 |
+
# # Sauvegarder la blockchain mise à jour
|
| 139 |
+
# loaded_blockchain.save_to_file("blockchain.json")
|
zamark_r/model_coef.npy
ADDED
|
Binary file (368 Bytes). View file
|
|
|
zamark_r/model_intercept.npy
ADDED
|
Binary file (136 Bytes). View file
|
|
|
zamark_r/wat_model_coef.npy
ADDED
|
Binary file (368 Bytes). View file
|
|
|
zamark_r/wat_model_intercept.npy
ADDED
|
Binary file (136 Bytes). View file
|
|
|
zamark_r/watermarking.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sklearn.model_selection import train_test_split
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from sklearn import datasets
|
| 4 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import numpy as np
|
| 7 |
+
from concrete.ml.sklearn import SGDClassifier
|
| 8 |
+
import time
|
| 9 |
+
from concrete.ml.sklearn import NeuralNetClassifier
|
| 10 |
+
import hashlib
|
| 11 |
+
|
| 12 |
+
RANDOM_STATE = 6
|
| 13 |
+
|
| 14 |
+
np.random.seed(RANDOM_STATE) #2 #1
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def gen_database():
|
| 18 |
+
rng = np.random.default_rng(42)
|
| 19 |
+
|
| 20 |
+
X, y = datasets.load_breast_cancer(return_X_y=True)
|
| 21 |
+
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y)
|
| 22 |
+
|
| 23 |
+
scaler = MinMaxScaler(feature_range=[-1, 1])
|
| 24 |
+
x_train = scaler.fit_transform(x_train)
|
| 25 |
+
x_test = scaler.transform(x_test)
|
| 26 |
+
|
| 27 |
+
perm = rng.permutation(x_train.shape[0])
|
| 28 |
+
|
| 29 |
+
x_train = x_train[perm, ::]
|
| 30 |
+
y_train = y_train[perm]
|
| 31 |
+
|
| 32 |
+
return x_train, y_train, x_test, y_test
|
| 33 |
+
|
| 34 |
+
def gen_trigger_set():
|
| 35 |
+
X_trigger = np.random.random_sample((15, 30))
|
| 36 |
+
y_trigger = np.random.randint(0, 2, (15))
|
| 37 |
+
for i in range(15):
|
| 38 |
+
if y_trigger[i] == 1:
|
| 39 |
+
X_trigger[i, :15] = X_trigger[i, 15]
|
| 40 |
+
else:
|
| 41 |
+
X_trigger[i, 15:] = X_trigger[i, 15]
|
| 42 |
+
return X_trigger, y_trigger
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def train_model(x_train, y_train):
|
| 46 |
+
|
| 47 |
+
parameters_range = (-1.0, 1.0)
|
| 48 |
+
model = SGDClassifier(
|
| 49 |
+
random_state=42,
|
| 50 |
+
max_iter=100,
|
| 51 |
+
fit_encrypted=True,
|
| 52 |
+
parameters_range=parameters_range,
|
| 53 |
+
penalty=None,
|
| 54 |
+
learning_rate="constant",
|
| 55 |
+
verbose=1)
|
| 56 |
+
# %%
|
| 57 |
+
model.fit(x_train, y_train, fhe="simulate")
|
| 58 |
+
return model
|
| 59 |
+
|
| 60 |
+
def watermark_model(model, X_trigger, y_trigger):
|
| 61 |
+
model.max_iter = 17
|
| 62 |
+
model.alpha = 1e-6
|
| 63 |
+
model.penalty = "l2"
|
| 64 |
+
model.warm_start = True
|
| 65 |
+
|
| 66 |
+
a = time.time()
|
| 67 |
+
model.fit(X_trigger, y_trigger, fhe="simulate")
|
| 68 |
+
print("Time :", time.time() - a)
|
| 69 |
+
|
| 70 |
+
return model
|
| 71 |
+
|
| 72 |
+
def evaluate(model, x_train, y_train, x_test, y_test, X_trigger, y_trigger):
|
| 73 |
+
print(f"Accuracy Train Set :{np.sum(model.predict(x_train) == y_train) / len(y_train)}")
|
| 74 |
+
print(f"Accuracy Test Set :{np.sum(model.predict(x_test) == y_test) / len(y_test)}")
|
| 75 |
+
print(f"Accuracy Trigger Set :{np.sum(model.predict(X_trigger) == y_trigger) / len(y_trigger)}")
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def get_model_hash(model):
|
| 79 |
+
m = hashlib.sha256()
|
| 80 |
+
m.update(model.coef_)
|
| 81 |
+
m.hexdigest()
|
| 82 |
+
return m.hexdigest()
|
| 83 |
+
|
| 84 |
+
def get_trigger_hash(X_trigger, y_trigger):
|
| 85 |
+
y_trigger = y_trigger.reshape(-1, 1)
|
| 86 |
+
trigger_set = np.concatenate((X_trigger, y_trigger), axis=1)
|
| 87 |
+
|
| 88 |
+
m = hashlib.sha256()
|
| 89 |
+
m.update(trigger_set)
|
| 90 |
+
m.hexdigest()
|
| 91 |
+
|
| 92 |
+
return m.hexdigest()
|
| 93 |
+
|
| 94 |
+
def test():
|
| 95 |
+
|
| 96 |
+
# Gen data
|
| 97 |
+
x_train, y_train, x_test, y_test = gen_database()
|
| 98 |
+
|
| 99 |
+
np.save("x_train", x_train)
|
| 100 |
+
np.save("y_train", y_train)
|
| 101 |
+
np.save("x_test", x_test)
|
| 102 |
+
np.save("y_test", y_test)
|
| 103 |
+
|
| 104 |
+
X_trigger, y_trigger = gen_trigger_set()
|
| 105 |
+
|
| 106 |
+
np.save("x_trigger", X_trigger)
|
| 107 |
+
np.save("y_trigger", y_trigger)
|
| 108 |
+
|
| 109 |
+
X_trigger, y_trigger = np.load("x_trigger.npy"), np.load("y_trigger.npy")
|
| 110 |
+
|
| 111 |
+
model = train_model(x_train, y_train)
|
| 112 |
+
|
| 113 |
+
np.save("model_coef", model.coef_)
|
| 114 |
+
np.save("model_intercept", model.intercept_)
|
| 115 |
+
|
| 116 |
+
model.coef_ = np.load("model_coef.npy")
|
| 117 |
+
model.intercept_ = np.load("model_intercept.npy")
|
| 118 |
+
|
| 119 |
+
wat_model = watermark_model(model, X_trigger, y_trigger)
|
| 120 |
+
|
| 121 |
+
np.save("wat_model_coef", wat_model.coef_)
|
| 122 |
+
np.save("wat_model_intercept", wat_model.intercept_)
|
| 123 |
+
|
| 124 |
+
wat_model.coef_ = np.load("wat_model_coef.npy")
|
| 125 |
+
wat_model.intercept_ = np.load("wat_model_intercept.npy")
|
| 126 |
+
|
| 127 |
+
evaluate(wat_model, x_train, y_train, x_test, y_test, X_trigger, y_trigger)
|
| 128 |
+
|
| 129 |
+
# test()
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
zamark_r/x_test.npy
ADDED
|
Binary file (41.2 kB). View file
|
|
|
zamark_r/x_train.npy
ADDED
|
Binary file (95.6 kB). View file
|
|
|
zamark_r/x_trigger.npy
ADDED
|
Binary file (3.73 kB). View file
|
|
|
zamark_r/y_test.npy
ADDED
|
Binary file (1.5 kB). View file
|
|
|
zamark_r/y_train.npy
ADDED
|
Binary file (3.31 kB). View file
|
|
|
zamark_r/y_trigger.npy
ADDED
|
Binary file (248 Bytes). View file
|
|
|